

1

The Citizen Lab

Research Brief

November 2013

Asia Chats:

Investigating Regionally-based Keyword Censorship in LINE

Author: Seth Hardy

This report describes the technical details of client-side censorship functionality in the LINE messenger client

for Android, and a method for disabling it. This is the first in a series of research reports analyzing information

controls and privacy in mobile messaging applications used in Asia. An introduction to the project can be

found here.

On May 20, 2013, Twitter user @hirakujira reported finding a list of 150 blocked words within Lianwo (连我)

, the Chinese version of the LINE application. This finding was prompted by a string in the program related to

blocking capability. For more information on what specific keywords are being blocked, Jason Q. Ng

translated the keyword lists from Chinese to English and describes context behind them. The first keyword list

extracted by @hirakujira is described in a series of blog posts (full list available here) and the most recent

keyword list uncovered by Citizen Lab and translated by Ng is available here.

A more in-depth analysis of the international LINE client is motivated by similar messages such as this one in

the application’s resource files (found at res/values*/strings.xml), which clearly indicates that it is not just the

Lianwo version of LINE that censors messages within the application:

<string name="chathistory_chinese_user_word_error">This message contains forbidden words and cannot be

sent.</string>

Reverse engineering the LINE application reveals that when the user’s country is set to China, it will enable

censorship functionality: it will download a list of censored words from Naver’s website, and then disallow

sending any messages that contain any of those words, as well as replace those words with asterisks when

received. The region data is encrypted in newer versions of LINE, likely due to users changing it in order to

get free in-app downloadable content. Fortunately, it is still possible to disable censorship by changing the

encrypted region.

The code analysis in this report was performed on LINE v3.8.5 for Android (APK MD5:

56c9076d56cc20f618df83eaf97a52dc), and the behavior was confirmed on an Android device running v3.9.3

downloaded directly from the Google Play store, current as of November 14, 2013. The presence of

http://line.naver.jp/
https://citizenlab.org/2013/11/asia-chats-analyzing-information-controls-privacy-asian-messaging-applications/
http://pastebin.com/DA4qAFZv
https://twitter.com/hirakujira/status/336531139898519553
http://blockedonweibo.tumblr.com/post/65525907975/the-chinese-keywords-on-messaging-app-lines-bad
https://docs.google.com/spreadsheet/pub?key=0Ap7d8TAdoF_LdGw0QmUxVHN1ODNPai1PMm50N1IwZUE&output=html
https://docs.google.com/spreadsheet/pub?key=0Ap7d8TAdoF_LdHVpMmw2UnpUbUFoZE1jOTl6STk1M2c&output=html

November 2013

 2

censorship functionality has been confirmed as far back as v3.4.2, released on January 18 2013, using APK

files found at AndroidDrawer.

REGION SETTINGS

When LINE is installed, it asks for the user’s country and phone number. The service will send a SMS to this

phone number with a four digit code for verification. If the country code of the phone number and the region

selected do not match, the program will display an error and suggest the user try again later.

Figure 1: This screenshot shows an error message that is displayed to users in the registration menu
if the phone number and the region selected do not match.

This verification makes it difficult for researchers outside of China to test and verify censorship

implemented in LINE.

http://www.androiddrawer.com/13771/
https://citizenlab.org/wp-content/uploads/2013/11/linepost-verify.png
https://citizenlab.org/wp-content/uploads/2013/11/linepost-verify.png

November 2013

 3

WORD LISTS

The application uses two URLs to retrieve a word list. The URLs are apparently not entered into the settings

database if LINE is installed using a non-Chinese region, but can be found in the file app-config.properties at

the root of the LINE .apk file. These URLs have been present since v3.4.2.

The URLs and their internal descriptions are:

URL_CHINA_BAD_WORDS_INFO = http://line.naver.jp/app/resources/bwi

URL_CHINA_BAD_WORDS = https://line.naver.jp/app/resources/bwraw

The file bwi has information on the version of the bad words file, containing a string that looks like this:

21,4320,v21, One interesting thing to note is that the file is not directly accessible over HTTP as referenced in

the above URL without a user agent string being set to “Android Mobile LA/xx”, where xx is a location code.

It is, however, accessible via HTTPS without the UA string:

$ curl http://line.naver.jp/app/resources/bwi

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>302 Found</title>

</head><body>

<h1>Found</h1>

<p>The document has moved here.</p>

</body></html>$ curl -A 'Android Mobile LA/UK' http://line.naver.jp/app/resources/bwi

21,4320,v21,$ curl https://line.naver.jp/app/resources/bwi

21,4320,v21,

The raw bad words file is not actually hosted at the above URL; the filename above has the version number

appended to it. For example, the v21 file is hosted at https://line.naver.jp/app/resources/bwraw.v21. As of

October 31, 2013, the files for v21 and v20 are available. The file can be accessed over HTTPS without the

user agent string described above, and over HTTP with it.

The bad word files are Base64 encoded and encrypted using AES in cipher block chaining (CBC) mode with

PCKS#7 padding. Decryption uses a static key stored in the binary:

 private static final byte[] key = {

76, -86, -111, 47, -128, -21, 62, -44, 4, -91, 44, 60, 72, -46, 91, -42, -9, 46, -127, -110, -37, 85, -98, 73, -86,

27, -103, 103, -25, 81, 117, -89

}; public static String decrypt(String encryptedFile) { try { byte[] encryptedBytes =

Base64encoder.decode(encryptedFile); SecretKeySpec secretKey = new SecretKeySpec(key, "AES");

Cipher c = Cipher.getInstance("AES/CBC/PKCS7Padding");

c.init(Cipher.DECRYPT_MODE, secretKey, new IvParameterSpec(new byte[16])); String decryptedWords =

new String(c.doFinal(encryptedBytes), "UTF-8"); return decryptedWords; }

For reference, the 256-bit AES key is:     4c aa 91 2f 80 eb 3e d4 04 a5 2c 3c 48 d2 5b d6   f7 2e 81 92 db 55

9e 49 aa 1b 99 67 e7 51 75 a7

Decrypted versions of these files are available here: [v20] and [v21].

Once downloaded, the bad words file is stored in the application’s cache directory as cbw.dat. If this list is

https://citizenlab.org/wp-content/uploads/2013/11/line-v20.txt
https://citizenlab.org/wp-content/uploads/2013/11/line-v21.txt

November 2013

 4

unavailable, LINE will default to using a smaller internal list:

private static Pattern g()

 {

File localFile = new File(n.b().getApplicationContext().getCacheDir(), "cbw.dat");

 if (!localFile.exists())

 try

 {

Pattern localPattern2 = getInternalBadWords()1;

return localPattern2; } catch (bwd localbwd2) { a("failed getDefaultWords", localbwd2); return null; }

The application also sets preference information on the downloaded word lists. The delay time of 10800000

milliseconds is equivalent to 3 hours:

static void setWordListPreferences()

 {

 long l = System.currentTimeMillis();

 SharedPreferences.Editor localEditor = bgb.a(bga.h).edit();

localEditor.putLong("word_list_update_delay", 10800000L); localEditor.putLong("word_list_update_date",

l); localEditor.putLong("word_list_version", 0L);

localEditor.commit(); }

The internal list of censored words is also Base64 encoded and encrypted using the same key, and has

remained unchanged since its introduction in v3.4.2:

5mxphvUu6sGOrG+Qw8EsqlMmx+kNh11mTfMLXZgNmxLfH4grWErsAEsqw+j34zUbdxDUiitSMr77CB

wBdEojcKjIHvdBPtRFduMb5TgvBjbtzmlXHN+UmUsDVmto7rMdCwP6+/AEzLmKB6GsAEs+3Q8xEtejC

qdMnuU262feg4m5OrNxlgX3wpifO/+9Q9lm4KzHAhs7ZSGCOZbE2j6wPOTTMA6TXh9G1gA560ZjGNu

+tLPJStUd08Kkw+AQvLl3ZSC3CexDT83D+FK1MYAUmfc6BIGh/AalsSszJcLyatT7hRUpeNl0/3i+0z2vtE

ZxEO6SU4mempEnR9ErjGWLpUIbNdWxFVf32Le1UaLE000+fL0y06lopoFyGIjELHg+dbtmGFRMpxhmZ

auEFmkIeElCVctonsX1866+c3qXVfDnXZg30BXb9Octrytti5C81/P9M0yDrbtDod2IKX1k39IDrsdqTPUC3+

TYyuAOACGnAN/FNkRQmeBbhzpY7Du2+F2fLm8QlFhm2MczaHyj9aDjMfUAEukNDtYi+Jj3MS+h8/F9

FW3gMHjneviLWBBe0fRJBbrxRvUKDtvS6vrMO/J2+nxiz/3dBgkG2kXFR6Y9PfV7X0fmBW/ZZLM3MM

Uk8LMmAJIuhcaiKhaHg4721pXqT7v7U2FmHLLiKJIev4a0lG+bxg9nM2m9IcDRSq7Uca08JefErOSSUOW

UoeWhNTtr1dhu07HgbhBaHxdHvurl9Ld+FHiKrJZNbZEnuNK5+xOrmBVemDc8untuB5IhotpDU3yAnZN

mvZSDJ00/PH05jOCbf4SgW+rkVOjsgodSpljGar7OBSfGR+hMujN4gay3hHm9Ygg5zN8LlME31CcADlFR

Cixo0p3b3VxMlAvBHSRItE/B/QwxKsG/IY7y2LCu6wJrctgfPYW/px2ItSOnd4LtztEpCBhQT3/CZbO6c0OL

WaDPufjnZYuyEXyA6677+aMcIAA0RpInRMmzwYg7eG4PnuygTgDWhm6mc5C8Raz2teUysHhsIP26WA

jdBQ+IPWgRvKLDzgpKaOI+moYqXarkTRBBdtMEOp4d4+sU953rE4i8sWtVHSzpV9sprJ5FgdayGOleKn

Zoy9GX1l38ey983hX8+LnMsyVKpjw8I9NWCFdknigP9QvAAYaDAqE0g4Y0oD3G1YAikkHCV0Foc8lU

ww++9XpECxlED7znaF9USMeXV+ZyzRjztUk/kg==

For a decrypted version of this list, see [here].

The bad words check is only performed if the region stored in LINE’s settings is “CN”:

public static final boolean c()

 {

 add.a();

 if (add.c());

https://citizenlab.org/wp-content/uploads/2013/11/line-internal.byte_.txt

November 2013

 5

 String str;

 do

 {

 return true;

 add.a();

 if (jl.d(add.a(cya.a)))

 return false;

 af localaf = b();

 if (localaf == null)

 break;

 str = localaf.c();

 }

 while ((jl.d(str)) && (

Locale.CHINA.getCountry().equalsIgnoreCase(str)

)); return false; }

Users in other regions are not subject to censorship, and changing the region code from CN to any other region

should prevent the censorship functions from being invoked.

CHANGING REGIONS

The LINE installation’s region is stored in a SQLite database on the Android device, in the file

/data/data/jp.naver.line.android/databases/naver_line.

To access the database, the Android device must be rooted. The database can be opened using either a SQLite

GUI program such as SQLite Editor, or by using the command line program sqlite3 from a shell on the

Android device. This example uses the command line program, which is preinstalled on many Android

devices.

Listing the tables shows the type of information stored in the database:

root@android:/data/data/jp.naver.line.android/databases # sqlite3 naver_line

SQLite version 3.7.16 2013-03-18 11:39:23 [www.ptsoft.org] [www.ptdave.com]

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> .tables

android_metadata contacts permanent_tasks

buddy_detail email_recommend push_history

channel esk_history setting

chat groups sns_friends

chat_history membership sticker

chat_member more_menu_item_status sticker_package

chat_notification noti_center version

The database setting contains the region as well as other user account details. One interesting thing to note is

that some of these values are Base642 encoded:

PROFILE_NAME|lUrTpRKtKUwg8riwl6b5Dw==

PROFILE_REGION|TnPF6Y1PAAuVhWt17IMRtA==

PROFILE_COUNTRY_CALLING_CODE|2BP0qhgFrPzM0qPSibkoKw==

https://play.google.com/store/apps/details?id=com.speedsoftware.sqleditor&hl=en_US

November 2013

 6

PROFILE_PHONE|kE/KhY6QGb/B2yuqPoQn3i==

PROFILE_NORMALIZED_PHONE|+wJ7t10qbHqR5yRezaJd0c==

This change is a recent development: as of mid-2012, users were changing their region in order to download

free stickers and in-app enhancements only available in other areas. Two examples of this can be found here

and here. Compare the Base64 values above to a screenshot of the database from a blog post on July 25, 2012:

Source: Frank’s Blog

When unencoded, these settings do not show up as the expected plaintext; the reason they are Base64 encoded

is not just for obfuscation, but also to convert encrypted binary data into printable characters. It is likely that

the region is stored encrypted to prevent people from changing their region to have access to more

downloadable content.

For example, decoding PROFILE_REGION gives 16 bytes of binary data:

00000000 26 c8 9b 97 37 68 d1 8c 83 42 43 f5 84 f2 83 0c |&...7h...BC.....|

By looking through the decompiled binary, we can see that this data is encrypted. Like the bad words file, it

uses AES, but with slightly different options.

Unlike the static key used for the bad words file, the settings are encrypted using a key derived from the

android_id value of the phone. More information on this value can be found here, and the value can be

determined using a program such as Android Id Info.

public final byte[] generateKey(long magicNumber)

 {

String str = Settings.Secure.getString(f.c().getApplicationContext().getContentResolver(), "android_id");

http://ocean2002n.pixnet.net/blog/post/91662519-%5Bandroid%5D-line-%E5%85%8D%E8%B2%BB%E8%A1%A8%E6%83%85%E7%AC%A6%E8%99%9F%E4%B8%8B%E8%BC%89
http://developer.android.com/reference/android/provider/Settings.Secure.html
https://play.google.com/store/apps/details?id=com.bzgames.androidid&hl=en
https://citizenlab.org/wp-content/uploads/2013/11/linepost-sqlite-edit.png

November 2013

 7

if (str == null) str = ""; int i = str.hashCode();

return generateKeyFromHash((byte)i, magicNumber);

}

This function generates the AES decryption key by taking the android_id identifier, hashing it using a standard

Java function, then applying another transformation algorithm to it to derive the key. The magicNumber value

is hardcoded into the program and is equal to 15485863.

AES decryption is performed in electronic codebook (ECB) mode with no padding:

public static byte[] decrypt(byte[] key, byte[] ciphertext)

 {

 SecretKeySpec sk = new SecretKeySpec(key, "AES");

 Security.addProvider(new BouncyCastleProvider());

 try {

Cipher c = Cipher.getInstance("AES", new BouncyCastleProvider());

c.init(Cipher.DECRYPT_MODE, sk); return c.doFinal(ciphertext); }

Using our example from above, we can decrypt the string to determine the region:

your region is : CN

decrypted region = 43 4e

encryption key = 3b 93 dd 57 52 b8 38 7e 07 e8 b0 0f c3 f5 89 12

encrypted region = 4e 73 c5 e9 8d 4f 00 0b 95 85 6b 75 ec 83 11 b4

encoded region = TnPF6Y1PAAuVhWt17IMRtA==

Changing the PROFILE_REGION value in the setting database to TnPF6Y1PAAuVhWt17IMRtA== will

change the region to China. This change can be confirmed by looking at the terms of service or privacy

information in the LINE application. It can also be confirmed by attempting to send a keyword from the bad

words list:

November 2013

 8

Figure 2: This screenshot shows a LINE user with region set to China receiving an error notification
after attempting to send keywords on the blocked keyword list. This error message indicates client-
side outbound keyword censorship is present in LINE.

To turn off censorship, we want to go in the reverse of the above example. On a China-region installation,

changing the region code from CN to another region (e.g. CA or US) will disable censorship functions.To

assist users we are releasing LINE Region Code Encrypter Tool developed by Seth Hardy and Greg Wiseman

(Senior Data Visualization Developer, Citizen Lab) for changing regions in the LINE client to disable

regionally-based keyword censorship in the application.

UPDATE - NOVEMBER 19TH, 2013

An article by Kaylene Hong of TheNextWeb provides a response from LINE Corporation regarding the

presence of regionally-based keyword censorship in their chat program: “A LINE spokesperson drew a clear

line between Lianwo and Line, emphasizing that the Chinese version of LINE is different from the global

version.” However, all of the censorship functionality described in this report is implemented in the global

version of LINE, and it is unclear whether the Lianwo version of LINE has additional functionality or is

merely rebranded.

Inbound Censorship

Incoming messages in LINE are also subject to censorship when the region is set to China. The LINE client

will replace any words found in bad word files (internal or downloaded) with asterisk characters. As with

outbound messages, inbound censorship requires a strict match, and can be bypassed by adding spaces or other

punctuation.

https://china-chats.net/line-encrypt/
http://thenextweb.com/asia/2013/11/15/a-study-finds-that-chat-app-line-is-systematically-censoring-politically-sensitive-words-in-china/

November 2013

 9

On a phone with LINE installed where the region is set to Canada, messages received which contain keywords

on the censorship list come through properly:

  Figure 3: This screenshot shows a LINE user with region set to Canada successfully receiving two
messages with keywords on the censored keyword list.

But if the application’s region is set to China, these words are blocked. The screen shot below shows that

messages with the keyword “李洪林访谈录” (Li Honglin Interview) are replaced by a series of asterisks, but

when the same keyword is sent with periods separating the individual characters the message is not blocked.

https://citizenlab.org/wp-content/uploads/2013/11/lineupdate-1.png
https://citizenlab.org/wp-content/uploads/2013/11/lineupdate-1.png

November 2013

 10

  Figure 4: This screenshot shows a LINE user with region set to China receiving messages with

keywords on the censored keyword list as a series of asterisks.

This method of censorship is particularly problematic, because to the message sender, it appears as if

the content was received properly.

https://citizenlab.org/wp-content/uploads/2013/11/lineupdate-2.png
https://citizenlab.org/wp-content/uploads/2013/11/lineupdate-2.png

November 2013

 11

  Figure 5: This screenshot shows the view of a LINE user with region set to Canada when sending

censored keywords to a user with region set to China. From the Canada-based user’s point of view
the messages appear to have been received and read by the China-based user.

The code that does incoming censorship is interesting. It uses a regular expression to match incoming

messages against the bad words file(s), and replaces the characters individually with asterisks. However,

because of how Android programs run, the code takes effect when the string is displayed in the main program,

but not in notifications. This function allows the recipient to see the censored message in a preview

notification:

November 2013

 12

Figure 6: This screenshot shows a message preview notification for a LINE user with region set to
China receiving a message with censored keywords.

About The Author Seth Hardy is a Senior Security Analyst at the Citizen Lab, Munk School of Global

Affairs, University of Toronto. Prior to the Citizen Lab, he worked for a large anti-virus vendor. Seth has

worked extensively on analysis of document-based malware and AV evasion methods. Other areas of

experience include: provably secure cryptography, random number generators, and network vulnerability

research. Seth has spoken at a number of security conferences including Black Hat, DEF CON, SecTor, and

the CCC. He holds degrees from Worcester Polytechnic Institute in Mathematics and Computer Science.

FOOTNOTES

  1. Names such as this are not the original names assigned to the functions, which were removed from the

 program when it was compiled. These informative names are assigned by an analyst while exploring the

 program.  

  2. Values we are not looking at in this analysis have been changed to protect user data.

