

Appendix A: Technical Analysis

Are the Kids Alright? Digital Risks to Minors from

South Korea’s Smart Sheriff Application

The Citizen Lab, at the Munk School of Global Affairs, University of Toronto has licensed this

work under a Creative Commons Attribution Share-Alike 2.5 (Canada) License. The work can be

accessed through https://citizenlab.org

Document Version 1.0

20 September 2015

https://citizenlab.org/

SMART SHERIFF FUNCTIONALITY .. 5

SMART SHERIFF USER INTERFACE .. 8

TECHNICAL METHODOLOGY ... 8

NOTIFICATIONS AND RESPONSIBLE DISCLOSURE .. 9

SMART SHERRIFF: TRACKED ISSUES .. 9

LACK OF TRANSPORT SECURITY IN COMMUNICATIONS WITH SMART SHERIFF

INFRASTRUCTURE...10
ISSUE 1.1: NO TRANSPORT SECURITY IN SMART SHERIFF COMMUNICATIONS (SEVERITY: HIGH) ..11
ISSUE 1.2: REMOTE CODE EXECUTION VIA MAN-IN-THE-MIDDLE IN THE APPLICATION INTERFACE —
INSECURE WEBVIEW USE (SEVERITY: HIGH) ..12
ISSUE 1.3: DISCLOSURE OF USER TRAFFIC RECORDS IN CLEARTEXT (SEVERITY: HIGH)12

PARENTAL CONTROLS CAN BE BYPASSED OR REMOVED ..15
ISSUE 2.1: POSSIBLE FILTER OR SCHEDULE RESTRICTION BYPASS VIA UNSAFE URL CHECK

(SEVERITY: LOW) ..15
ISSUE 2.2: SMART SHERIFF API DISCLOSES PARENT PASSWORD (SEVERITY: HIGH)16

INSUFFICIENT PROTECTION FOR ACCOUNT ACCESS AND FAILURES TO

AUTHENTICATE API QUERIES ...17
ISSUE 3.1: IDENTIFICATION TO SMART SHERIFF API IS BASED ON PREDICTABLE IDENTIFIERS

(SEVERITY: HIGH) ...17
ISSUE 3.2: API QUERIES DO NOT REQUIRE AUTHENTICATION (SEVERITY: HIGH)18
ISSUE 3.3: ARBITRARY USERS CAN CLAIM CHILD ACCOUNTS TO MONITOR ACTIVITIES AND MODIFY

PROTECTION SETTINGS (SEVERITY: HIGH) ...19
ISSUE 3.4: SMART SHERIFF DOES NOT APPEAR TO MONITOR OR RATE LIMIT SENSITIVE API
REQUESTS (SEVERITY: MEDIUM) ...21
ISSUE 3.5: DENIAL AND COMPRISE OF SMART SHERIFF SERVICE BASED ON CLAIMS OF MOBILE

NUMBERS (SEVERITY: HIGH) ...21
ISSUE 3.6: SMART SHERIFF API LEAKS ACCOUNT INFORMATION (SEVERITY: MEDIUM)22
ISSUE 3.7: IMPROPER AUTHENTICATION OF API REQUESTS ALLOW FOR FALSE INCIDENT REPORTS

(SEVERITY: LOW) ..23
ISSUE 3.8: SMART SHERIFF APPLICATION INTERFACE LEAKS ACCOUNT INFORMATION WITHOUT

AUTHENTICATION ..23
ISSUE 3.9: SMART SHERIFF WEB INTERFACE ALLOWS DEVICE CONTROL AND DISCLOSES

PERSONAL INFORMATION WITHOUT AUTHENTICATION (SEVERITY: HIGH)24
ISSUE 3.10: SMART SHERIFF WEB INTERFACE ALLOWS ACCOUNT ACCESS AND DISCLOSES

PERSONAL INFORMATION THROUGH UNAUTHENTICATED WEB INTERFACE API QUERIES

(SEVERITY: HIGH) ...26

INADEQUATE PROTECTION FOR LOCALLY STORED DATA ..27
ISSUE 4.1: UNSAFE MOBILE APP DATA STORAGE ON SD CARD (SEVERITY: LOW)28
ISSUE 4.2: LACK OF STORAGE PROTECTIONS ON THE MOBILE APPLICATION (SEVERITY: LOW)28
ISSUE 4.3: MULTIPLE INSECURE CONCATENATIONS ON MOBILE APP (SEVERITY: LOW)28

FAILURES TO SANITIZE INPUT DATA ...29
ISSUE 5.1: REFLECTED CROSS-SITE SCRIPTING (XSS) IN APPLICATION INTERFACE PAGES

(SEVERITY: MEDIUM)...29

ISSUE 5.2: REFLECTED CROSS-SITE SCRIPTING (XSS) IN WEB INTERFACE PAGES (SEVERITY:
MEDIUM) ..29
ISSUE 5.3: STORED CROSS-SITE SCRIPTING (XSS) FROM WEB INTERFACE PAGES (SEVERITY:
MEDIUM) ..30

Other Issues and Misconfigurations ..31
ISSUE 6.1: SMART SHERIFF TEST-PAGES AND OTHER FOUND RESOURCES LEAKS APPLICATION

INTERNALS (SEVERITY: LOW) ...31
ISSUE 6.2: SSL MISCONFIGURATION ON MOIBA RESOURCES (SEVERITY: MEDIUM)35
ISSUE 6.3: RESOURCES OUT OF DATE, POTENTIALLY VULNERABLE (SEVERITY: MEDIUM)37
ISSUE 6.4: DEVELOPMENT RESOURCES EXPOSED AND DOMAINS POSSIBLY OPEN FOR

REGISTRATION (SEVERITY: LOW) ...39
ISSUE 6.5: ERRONEOUS QUERIES EXPOSE INTERNAL DATABASE STRUCTURE (SEVERITY: LOW) .40

NOTE ON S-DREAM ..42

 5

Smart Sherriff and S-Dream are mobile applications that allow parents to control their children’s

mobile phone usage and monitor their messages, respectively. The applications were released by

the Korean Mobile Internet Business Association (MOIBA),1 a consortium of mobile

telecommunication providers and phone manufacturers, Smart Sheriff was officially launched for

Android in June 20122 with an iOS version created soon after (the iOS app has not been updated

since 2013 and its usability is reported to be limited because of platform restrictions).3

Smart Sheriff Functionality

Smart Sheriff allows parents to remotely monitor and administer applications that minors are

able to access on their mobile device, and to schedule the times of day that the phone can be

used. Descriptions of Smart Sheriff on app stores claim it can filter websites that minors can

access. However, these functions have apparently been disabled since May 18, 2015. MOIBA

indicated that the reason for disabling this functionality was concern over infringement on

children's privacy However, as we note later in issue 1.3, “Disclosure of User Traffic Records in

Cleartext,” while parents cannot monitor or control their children’s Internet access, cleartext

user-traffic information continued to be sent to MOIBA servers in a vulnerable manner.

1 https://www.moiba.or.kr/ [in Korean].
2 First link here: http://ss.moiba.or.kr/customer/bbs/list.do [in Korean].
3 http://translate.google.com/translate?hl=en&sl=ko&u=https://itunes.apple.com/us/app/seumateu-

boangwan/id689953031%3Fmt%3D8&prev=search.

https://www.moiba.or.kr/
http://ss.moiba.or.kr/customer/bbs/list.do
http://translate.google.com/translate?hl=en&sl=ko&u=https://itunes.apple.com/us/app/seumateu-boangwan/id689953031?mt=8&prev=search
http://translate.google.com/translate?hl=en&sl=ko&u=https://itunes.apple.com/us/app/seumateu-boangwan/id689953031?mt=8&prev=search

 6

Screenshot of removed filtering functions from Google Play Store.

Once installed on the child’s phone, Smart Sheriff requires information from a newly registered

user on:

● phone numbers for parent and child;

● the child’s gender and date of birth;

● name of child; and

● PIN code for the account’s administration.

 7

Installation Process from Smart Sheriff Guidebook

After registration, Smart Sheriff routinely transmits information on the usage and configuration

of the child’s phone to the back-end server, including:

● manufacturer, model, and operating system version for the device;

● applications installed on the phone and their amount of usage; and

● websites visited.

Additionally, Smart Sheriff requests “device administration” privileges to the phone that allow it

to set the device’s security policies for preventing removal of the application.4

It appears that the only authorized way to remove the app is through a function on the Web

interface for deleting accounts. Activating the removal process from the MOIBA site pushes a

command to the child’s phone to unlock access and uninstall Smart Sheriff.

During removal, Smart Sheriff performs a request to a unique API endpoint

(//main/deviceRelieve), passing the device identifier as the only parameter. This request appears

to be solely for tracking who uninstalls the Smart Sheriff, since the response is empty and the

application does not appear to check the result. The Smart Sheriff database is kept in the

sandboxed data directory and is reused if the application is reinstalled, but would not be

accessible unless the user has root access to the device.

4 http://developer.android.com/guide/topics/admin/device-admin.html

 8

Smart Sheriff User Interface

Parents can control the usage of applications on a child’s device through two interfaces, the

application itself and a website hosted by MOIBA.5 Both require the parent’s phone number and

the PIN code set during registration before the parent is granted administration privileges. All

user interactions and service communications, whether through the mobile application or the

desktop site, occur within a Web session to the same server.6

Smart Sheriff itself is simple in functionality. On both interfaces, the parent can review the

information collected from the child’s device and control what applications can be used. The

application also enables parents to completely disable use of the device for certain times of the

day over the week. The child’s interaction with the application is limited to the warning

messages that are triggered when s/he attempts to use prohibited applications or access the phone

during restricted times.

An additional internal MOIBA administration website is exposed to the public but it requires

username and password credentials for access.

Application Interface Web Interface Internal Administration

Technical Methodology

Installation of Smart Sheriff is restricted in the Google Play Store to users connecting from South

Korea. A genuine copy of the application package (APK) for version 1.7.5, released 15 May

5 Since disclosure, MOIBA has split Smart Sheriff into two versions, a “lite” child application and a parental

administration application.
6 As noted in Lack of Transport Security in Communications with Smart Sheriff Infrastructure, this site lacked

encryption for authentication and communications and exposed the application’s users to compromise. Additionally,

MOIBA’s internal administration site (ssadm.moiba.or.kr) has not appeared to use HTTPS for login or

administration.

 9

2015 on the Play Store, was found online through alternative channels. Subsequent versions

analyzed were obtained directly through the Google Play store.

With access to the APK, we were able to decompile the Java DEX package for evaluation and to

install the application locally to capture traffic between Smart Sheriff and its remote APIs.

Versions of Smart Sheriff that were investigated during the course of this report

Version SHA-1 Sum Comment

1.7.5 734b98b40a9bcba5f4182aa006c9d9f2b0d880db Original version investigated.

1.7.7 72abf9571aff3a92de8598477891a569fae9f553 Latest version released - some fixes

included.

As we note later, Smart Sheriff fails to protect user information in transit or stored on the device,

which provides easier access to service information for documenting systemic flaws. Through

access to the decompiled bytecode and user traffic, we were able to catalogue the calls made to

Smart Sheriff in the course of administration and use of the application.

Smart Sheriff only supports users with a South Korean phone number and does not provide

service to individuals outside of the country. While S-Dream appears to require a valid phone

number available to the application through device APIs,7 Smart Sheriff requests that the user

enter a phone number and then blindly trusts the registering user’s information without

secondary validation of ownership. Therefore, we were able to create an account associated with

an accepted phone number, with the consent of the phone number owner, outside of South Korea

Although a Smart Sheriff application for iOS appears in the iTunes store, it is a version (v1.0.0)

that has not been updated since 19 September 2013. Given the lack of attention paid to this

version, and the clear failures of the recently maintained Android application, we did not attempt

to evaluate flaws in the iOS version. However, screenshots from the iTunes store indicate that

the iOS version was built through a similar approach and would therefore have the same issues.

Notifications and Responsible Disclosure
On 3 August 2015, Citizen Lab notified MOIBA of the issues identified in the two security

audits. Following established standards for vulnerability disclosure, we set a publication deadline

for a minimum of 45 days after our initial disclosure of vulnerabilities to the vendor.8

On 5 August a MOIBA representative replied and provided an initial timeline for addressing

fifteen of the vulnerabilities. On 6 August MOIBA released an updated version of the application

7 This function can also be bypassed since no additional verification of the number occurs.
8 See, for example, “Vulnerability Disclosure Policy,” http://www.cert.org/vulnerability-analysis/vul-disclosure.cfm.

http://www.cert.org/vulnerability-analysis/vul-disclosure.cfm

 10

(v1.7.6) that supported HTTPS.9 An additional update (v1.7.7) released on 25 August claimed to

address additional vulnerabilities. 10

By the most recent timeline provided to the Citizen Lab by MOIBA, 20 September 2015 patches

should be in place for twenty of the issues identified, with sixteen published. Two further patches

are scheduled shortly after the publication of this report. However, we has not fully verified

whether all patches have been implemented, and MOIBA has not fully of the manner in which

the vulnerabilities were addressed.

On 4 September MOIBA was notified of this report’s intended publication date and was sent a

copy for review to ensure that no personally identifying information was inadvertently disclosed.

As of the date of publication, we have not received any further correspondence from MOIBA.

Smart Sherriff: Tracked Issues

The following sections list vulnerabilities and implementation issues identified during our audit

of Smart Sheriff. The issues are grouped by themes rather than degree of severity and impact.

This assessment is the merged product of two independent security audits: one by researchers

who collaborated at the 2015 Citizen Lab Summer Institute (CLSI) held at the Munk School of

Global Affairs, University of Toronto11 and another by the auditing firm Cure53.12 Cure53’s

security audit was performed under an ongoing contract from the Open Technology Fund.13

Where Cure53 identified the issue, we provide a reference to their security audit report.

Lack of Transport Security in Communications

with Smart Sheriff Infrastructure

9

https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2949&pop=Y&N

OWNUM=3 [in Korean].
10

https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2984&pop=Y&N

OWNUM=1 [in Korean].

11 The Citizen Lab at the Munk School of Global Affairs, University of Toronto, is an interdisciplinary laboratory

that explores the intersection of information and communications technology (ICT), global security, and human

rights. For more information on the Citizen Lab see https://citizenlab.org. The Citizen Lab Summer Institute is an

annual research workshop organized by the Citizen Lab (see https://citizenlab.org/summerinstitute/index.html). In

this document we identify the individuals who collaborated on the security audit of Smart Sheriff at CLSI 2015 as

“CLSI participants.”
12 Cure53 is a Berlin-based security company specializing in thorough and manual penetration tests and code audits

covering Web applications, cryptographic implementations, and other soft- and hardware. For more information on

Cure53 see https://cure53.de
13 For more information on the Open Technology Fund see https://www.opentechfund.org

https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2949&pop=Y&NOWNUM=3
https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2949&pop=Y&NOWNUM=3
https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2984&pop=Y&NOWNUM=1
https://ss.moiba.or.kr/customer/bbs/info.do?BBS_BOARD_CODE=Notice&BBS_POST_CODE=2984&pop=Y&NOWNUM=1
https://www.opentechfund.org/

 11

Issue 1.1: No Transport Security in Smart Sheriff Communications

(Severity: High)

Smart Sheriff maintains and updates itself through interactions with an API located at

api.moiba.or.kr through JSON-encoded POST requests over a keep-alive HTTP connection

(primarily to the endpoint /MessageRequest).14 While this server supports TLS (see SSL

Misconfiguration on MOIBA Resources) and appears to properly respond to API calls over

HTTPS, currently all API calls are hardcoded in the application to make requests in the clear.

The only encrypted communications between the application and the remote Smart Sheriff

service are those that use Google’s Cloud Messaging (GCM) infrastructure. GCM is used as a

push messaging service to coordinate changes made in the application’s administrative interfaces

(see Remote Code Execution via Man-in-the-Middle in the Application WebView) and the local

application’s database. Outside of GCM, we could not identify a single API request using

transport encryption, and a number of searches on the decompiled application yielded no results

for HTTPS addresses.

As a result of this failure to encrypt data, the parameters necessary for authentication,

registration, and coordination with the Smart Sheriff services are transmitted to a remote API in

cleartext exposed to anyone listening on the network. These contain users’ Personally

Identifiable Information (PII), including the children’s and parents’ names, dates of birth, mobile

device hardware and system information, gender, and telephone numbers. Smart Sheriff also

subsequently transmits in the clear the unique account identifier and passcode set by the parent to

limit access, as well as session cookies, which are used for authenticating the client to the

service. This behaviour is especially concerning in a mobile application, given that mobile

devices generally favor WiFi over mobile data usage, and are therefore exposed to

eavesdropping by other users of wireless networks.

While the authentication flaws enumerated later in this report present more expedient access to

accounts, failure to encrypt communications provides for the easy interception and

impersonation of communications between Smart Sheriff and local network users. These

transactions provide an intermediary with the ability to control the device by forging commands

to restrict usage or to disable the device. Through a privileged network position, such as

directing the device to a false version of the API through DNS, an attacker could disrupt the use

of the device, falsify application queries on the sensitivity of content, or curtail parental controls.

Smart Sheriff offers a Web interface for the administration of accounts in a normal browser

environment on a site hosted on the same server as the API (at an alternative domain,

ss.moiba.or.kr). This site also lacks encryption for authentication and communications, and

further exposes the application’s users to compromise. Additionally, MOIBA’s internal

administration site (ssadm.moiba.or.kr) does not appear to use HTTPS for login or

administration.

14 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 4 and CLSI participants.

 12

Issue 1.2: Remote Code Execution via Man-in-the-Middle in the

Application Interface —Insecure WebView Use (Severity: High)

Smart Sheriff provides the main user interface for administering the application through an

Android WebView that communicates with a remote Web server (ssweb.moiba.or.kr).15 A

simple full-text search on the decompiled application indicates that the lack of transport

encryption between the application and remote server could allow an attacker to get control over

a phone running Smart Sheriff because of its insecure usage of Android’s JavaScript Interfaces

for WebViews.

Affected Code

Object obj1 = “http://ssweb.moiba.or.kr/pushAlarm”;

_L6:

 WebView webview = (WebView)findViewById(0x7f070000);

 webview.setWebViewClient(new l(this));

 webview.getSettings().setJavaScriptEnabled(true);

 webview.getSettings().setSavePassword(false);

 webview.getSettings().setSaveFormData(false);

 webview.setWebChromeClient(new kr.co.wigsys.sheriff.ui.f(this));

 webview.postUrl(((String) (obj1)), ((String) (obj)).getBytes());

Given that all network traffic between the application and the API uses unencrypted HTTP, a

man-in-the-middle attack can be easily executed by any attacker who manages to lure a victim

into a malicious WiFi network or otherwise has the ability to intercept the user’s traffic.

Consequently, this allows an attacker to insert arbitrary code into the session and can therefore

act as a simple remote code execution vector.

Issue 1.3: Disclosure of User Traffic Records in Cleartext (Severity:

High)

15 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 3.

 13

Smart Sheriff ships with the ability to monitor and filter access to Web content, although use of

this functionality is not currently available for parents.16 Despite this feature not being

operational, the application still sends records of all Web traffic from the child’s device to the

Smart Sheriff service. Rather than tunnel traffic to an intermediary for traffic inspection, Smart

Sheriff establishes a monitoring service on Android to read the browser history as it is recorded

to report and match it against a block list. For every page accessed, an API request is made to the

Smart Sheriff API containing the requested domain, page, and URL parameters regardless of

whether this Web request was performed to an HTTPS site.

Notification on Smart Sheriff’s Web interface that the filtering and monitor service is not

currently available.

In response to these calls, Smart Sheriff returns a score for each site, determining whether the

site should be filtered. If the site is deemed offensive, then the user is forwarded to a blocked site

page. While this query includes a property “ENCRYPT_URL,” which is an obfuscated copy of the

requested URL, it concurrently also sends the same URL in clear text. Although some

information would already be available to intercepting parties, Smart Sheriff circumvents part of

the protective features of HTTPS, thus undermining the security of third-party websites the user

has visited by simultaneously exposing the traffic to the network and sending a complete

browsing record to MOIBA.

16 CLSI participants.

 14

Host api.moiba.or.kr

Resource POST /MessageRequest

Sent {

“DIRECTORY”:”Page Requested”,

“PORT”:”80”,

“ENCRYPT_URL”:”Obfuscated URL”,

“MOBILE”:”Device Identifier”,

“action”:”CLT_BLCK_CHKURLBLOCKINFO”,

“DEVICE_ID”:”Device Identifier”,

“URL”:”Domain”,

“PARAMETER”:”Passed URL Parameters”

}

Returns

Urlencoded

{

“BLCK_ACT_DIVN”:”1”,

“B_PATH”:”/”,

“ENCRYPT_URL”:”Encrypted URL of Request”,

“B_FILE”:”/”,

“B_PORT”:”80”,

“BAD_BLCK_GRADE”:”Site Grade”

}

 15

Parental Controls Can Be Bypassed or Removed

Issue 2.1: Possible Filter or Schedule Restriction Bypass via Unsafe

URL Check (Severity: Low)

Smart Sheriff uses the WebView method shouldOverrideUrlLoading() to determine whether a

URL should be loaded or blocked.17 This method is implemented in a vulnerable way because it

checks the URL string for certain values using the string method contains(), which is a simple

search for the presence of the string in the address.

Affected Code (decompiled source)

function shouldOverrideUrlLoading:

s.startsWith(“market://”) || s.startsWith(“tel:”) ||
s.startsWith(“http”) && ! s.contains(“ssweb.moiba.or.kr”)

To prevent parent-set restrictions from disabling access to the application interface, this method

ensures that “ssweb.moiba.co.kr” is not blocked by any filtering rules. This means that any URL,

even if blacklisted, can be requested, as long as the string “ssweb.moiba.co.kr” is attached to the

address (e.g., “blockedsite.com/?ssweb.moiba.co.kr,” which would not be likely to interfere with

the usability of the site requested). Then, the contains() method call will return a true and the

URL will be considered whitelisted.

17 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 4.

 16

Issue 2.2: Smart Sheriff API Discloses Parent Password (Severity:

High)

If an attacker is able to guess, enumerate, or intercept the device identifier of a phone with Smart

Sheriff installed, they can then make API queries on its behalf, granting control over the account

and providing for the disclosure of user information (for further details see Insufficient

Protection for Account Access and Failures to Authenticate API Queries).18 Among these

disclosures, queries can be made to the Smart Sheriff API that offers account and password

retrieval to disclose the PIN code associated with the account.

Host api.moiba.or.kr

Resource POST /MessageRequest

Sent request={“action”:”CLT_MBR_GETCLIENTMEMBERINFO”,”MOBILE”:”De
vice Identifier”}

Example request={“action”:”CLT_MBR_GETCLIENTMEMBERINFO”,”MOBILE”:”]5
Z\\WSVAB5]”}

Returns

Urlencoded

{

 “CHILD_GRADE_TYPE”:”Child Grade”,

 “CHILD_BIR_YMD”:”Date of Birth”,

 “MEMBER_YN”:”Membership Status”,

 “CHILD_BLCK_GRADE”:”Level of Blocking”,

 “PASSWORD”:”Parental Pin (Encoded)”,

 “PARENT_MOBILE”:”Parental Phone Number(Encoded)”,

 “REGISTRATION_ID”:”Registration ID”,

 “DIVN”:”(Parent or Child)”

}

The response consists of URL-encoded JSON data containing a “PASSWORD” and

“PARENT_MOBILE” field. The interesting data are “encrypted” with a simple XOR

obfuscation mechanism and can be extracted from the Android app. (See further details on this

18 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 7 and CLSI participants.

 17

obfuscation mechanism in Insufficient Protection for Account Access and Failures to

Authenticate API Queries).

The application can be removed by entering the PIN code assigned during the initial registration

process. This PIN appears to be constrained to four characters, which is substantially limited

compared to industry practice. As we note in Smart Sheriff Does Not Appear to Monitor or Rate

Limit Sensitive API Requests, a brute-force attack would be unlikely to be prevented by the API.

However, while a PIN length of four characters is insufficient to protect any information of a

sensitive nature, the insecure API request takes the burden of brute forcing 10,000 numbers off

the attacker and exposes the passwords directly.

During removal, Smart Sheriff performs a request to a unique API endpoint

(//main/deviceRelieve), passing the device identifier as the only parameter. This request appears

to be solely for the purpose of tracking who uninstalls Smart Sheriff, since the response is empty

and the application does not appear to check the result. The Smart Sheriff database is kept in the

sandboxed data directory and is reused if the application is reinstalled, but would not be

accessible unless the user has root.

Insufficient Protection for Account Access and

Failures to Authenticate API Queries

Issue 3.1: Identification to Smart Sheriff API Is Based on

Predictable Identifiers (Severity: High)

The primary mechanism for identification across Smart Sheriff APIs is a string variable named

“MOBILE,” “MOBIL E_NUMVAL,” “PARENT_MOBILE,” or “CHILD_MOBILE,” which we refer to

as a device identifier.19 The device identifier is primarily derived from the phone number

associated with the device the application is installed on or, if the phone number is not available,

a unique hardware identifier such as the phone’s IMSI.

When used for authentication, this value is XOR obfuscated. The key for this operation can

either be easily reverse-engineered or extracted from the decompiled sources of the app, allowing

an attacker to decrypt any of the protected data or target specific users. Since the number of

phone numbers in South Korea is finite, predictable, and relatively limited, an attacker could

potentially enumerate over all assigned South Korean phone numbers to determine whether an

account is associated with any given number. Alternatively, in the case of targeted intrusion, the

attacker can in most cases simply determine an individual’s device identifier from their phone

number. Once the device identifier is obtained, takeover of the account is trivial.

String “Crypto” (XOR) in Python

19 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 6 and CLSI participants.

 18

import sys

SS_XOR_KEY =
bytearray([109,0,111,105,98,97,103,116,119,0,105,103,115,121,115,116,101,0,
109,115,102,105,103,104,116,0,105,110,103,104,104,104,107,0,107,107,107,111
,107])

def xor_strings(s,t): return ““.join(chr(ord(a)^b) for a,b in zip(s,t))

sys.stdout.write(xor_strings(sys.argv[1], SS_XOR_KEY))

The key used to obfuscate the device identifier is represented by the string

“‘moibagtwigsystemsfightinghhhkkkkok.” Even if the key is not known to an attacker,

the cryptography in use by the app can be fully bypassed with the use of a simple and well-

known plaintext attack. All the XOR-encoded information can be easily decoded and allow any

attacker to access sensitive information or perform API calls to leak additional data.

Issue 3.2: API Queries Do Not Require Authentication (Severity:

High)

Smart Sheriff does not require cookies, such as a session ID, or any form of second-factor

authentication to perform a broad number of operations on behalf of the user through its API.20

To exacerbate this, other parameters that could be used to validate the user to Smart Sheriff, such

as children’s names, can be omitted or set with false data for most API calls. Parameters such as

DEVICE_ID appear to be nothing more than duplicating the obfuscated device identifier

discussed earlier.

The Smart Sheriff application interface is a WebView wrapper for a site located on the public

Internet. Authentication between the application and its interface is based on the obfuscated

device identifier and a session identifier is maintained through a simple cookie. While

interception of this cleartext transaction should be sufficient for hijacking, more straightforward

forgery can occur by predicting the device identifier to create a new session cookie to gain access

to the same application interface as the user of the account would see on their mobile device.

20 Cure53 and CLSI participants. “Pentest-Report Smart Sheriff 07.2015,” p. 6 contains further examples of the user

data that are disclosed by unauthenticated queries.

 19

Action Authentication from the Phone to the Application Interface

Host ssweb.moiba.or.kr

Resource POST /main/login

Requires MOBILE=Device Identifier

Sent Valid Session Cookie

Issue 3.3: Arbitrary Users Can Claim Child Accounts to Monitor

Activities and Modify Protection Settings (Severity: High)

Smart Sheriff does not ensure the number claimed by a user in the process of registration is

actually associated with the device or under the user’s control.21

Typically, mobile services that authenticate based on a phone number require a second factor

prior to registration or login, such as providing a code sent by SMS to the requested phone

number. Registration for Smart Sheriff can occur during the first use of the application and from

the Web interface. The on-device registration API provides for the most straightforward means

for a third party to associate a number with an account, since it does not appear to be necessary

to be logged in or in possession of a valid number to claim the number to a parent. Through

registering a child account to a parent, the child’s activity can be monitored and the services

offered by Smart Sheriff can be curtailed, including deleting the application from the child’s

phone through a page provided in the Web interface.

Action Register Account from Device’s API

Host ssweb.moiba.or.kr

Resource POST /member/memberRegisterProc

Sent

Urlencoded

ACCOUNT_GBN=login&

IN_DEVICE_ID=&

SMRT_PHN_OS=&

PRVT_INFO_COL_AGREE_YN=Y&

FLAG_YN_C=Y&

FLAG_YN_V=Y&

21 CLSI participants.

 20

MOIBILE_DEVICE_VENDER=&

MOIBILE_DEVICE_MODEL=&

MOIBILE_ANDROID_VER=&

MOIBILE_ANDROID_RELEASE=&

REGISTRATION_ID=&

CHILD_MOBILE=Child Number&

OS_TYPE=&

APP_TYPE=&

PARENT_TELECOM_CD=&

PARENT_NAME=&

PARENT_SEX=&

PARENT_MOBILE=Parent Number&

SERVICE_USE_AGREE_YN=Y&

PRVT_INFO_USE_AGREE_YN=Y&

PRVT_INFO_OFFER_AGREE_YN=Y&

PACH_GBN=&

TELECOM_CD=&

NAME=&

BIR_YMD1=&

BIR_YMD2=&

BIR_YMD3=&

SEX=&

reqnum=&

CHILD_NAME=&

CHILD_SEX=&

BIR_Y=&

BIR_M=&

BIR_D=&

CHILD_BLCK_GRADE=

Action Register Child Phone from the Web Interface’s API

Host ss.moiba.or.kr

Resource POST /childPhone/insertAddChild.do

Requires Valid Session Cookie for Real Account

Sent

Urlencoded

CHILD_MOBILE=Child Number&

CHILD_NAME=&

CHILD_NCKNM=&

 21

BIR_YMD=&

CHILD_SEX=&

TEL_CD=&

CHILD_MOBILE1=Child Number[1-3]&

CHILD_MOBILE2=Child Number [4-8]&

CHILD_MOBILE3=Child Number [8-12]

Issue 3.4: Smart Sheriff Does Not Appear to Monitor or Rate Limit

Sensitive API Requests (Severity: Medium)

To understand the popularity of Smart Sheriff’s services, we attempted to enumerate potentially

valid phone numbers through the application’s API to determine whether an account was

associated with the number.22 After enumeration of nearly one million potential phone numbers,

scanning stopped to limit further data collection. At no point were these queries subject to

restriction from the Smart Sheriff service, despite how these requests should have been highly

noticeable.23 This means that brute-force attempts on passwords and numbers would be feasible

against the application, even if great protections for account access were put into place.

Issue 3.5: Denial and Comprise of Smart Sheriff Service Based on

Claims of Mobile Numbers (Severity: High)

Once a device identifier has been claimed by a “parent,” it does not appear to be immediately

possible to regain access to that number through the Smart Sheriff application or Web interface.

The service trusts claims made on numbers without additional validation, which creates the

opportunity for a malicious actor to deny access to the service through preemptively associating

phone numbers to non-existent accounts. (For methods see Arbitrary Users Can Claim Child

Accounts to Monitor Activities and Modify Protection Settings).

While the Web interface’s enrolment page checks whether a number is taken before attempting

to register, the availability-check and registration actions are performed by two independent API

calls. If the Web interface’s registration API is called directly for an already-claimed number, it

blindly creates a new account association, whether or not the already-claimed number has an

existing account. This allows for the additional association of an account to a parental

22 Cure53 and CLSI participants.
23 These data were subsequently destroyed because of concerns over the sensitivity of user information and the ease

of collection.

 22

administrator without validation by the child unilaterally, providing a further vector of

compromise.

Combined with the predictable identification schema of Smart Sheriff and the service’s failure to

rate limit requests on account service, this vulnerability provides a vector for massively

disrupting the service through denying further registrations and compromising accounts to delete

the application from users’ phones. Thus, the blind trust model could be used as a means to

permanently disrupt all functions of the Smart Sheriff service.

Issue 3.6: Smart Sheriff API Leaks Account Information (Severity:

Medium)

As noted in Smart Sheriff API Discloses Parental Password, the Smart Sheriff API offers an

action labeled CLT_MBR_GETCLIENTMEMBERINFO, which takes an obfuscated device identifier

and exposes personal and administrative information.24 These APIs disclose a substantial amount

of private data on the user based solely on the device identifier, for example, the parent’s phone

number, associated children, and dates of birth. Since the device identifier is easily obtainable

and predictable, any API-provided information is therefore subject to simple disclosure and

enumeration. Given the simplicity of this approach, we do not attempt to detail every piece of

data leaked by various APIs. We expect that any information collected by Smart Sheriff can be

obtained by a third party on the basis of the device identifier.

24 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 8 and 11 and CLSI participants.

 23

Issue 3.7: Improper Authentication of API Requests Allow for False

Incident Reports (Severity: Low)

When a child installs (and uses) additional applications or visits Web pages, these actions are

reported to the parent through their copy of the application or the Web interface. 25 Since API

requests are not properly authenticated, a third party can easily forge reports of prohibited

activity once they have access to the device identifier. A parent attempting to discern whether the

reported activity was actually produced by the child’s behaviour would have no means of

knowing whether the claim was valid.

Issue 3.8: Smart Sheriff Application Interface Leaks Account

Information Without Authentication

Smart Sheriff does not consistently authenticate requests and API calls using the obfuscated

device identifier or the derivable session cookie.26 In numerous instances, information is

retrievable simply based on passing a phone number to a specific URL. In the case of the

remotely hosted application interface, the selfUseStatus page requires only the plain device

identifier (the unencrypted phone number or hardware identifier used to register the child’s

account) and then discloses the name, age, and usage statistics of the associated user.

Address http://ssweb.moiba.or.kr/main/selfUseStatus?MOBILE_NUMVAL=Ch
ild Phone Number

25 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 11 and CLSI participants.
26 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 10.

 24

Issue 3.9: Smart Sheriff Web Interface Allows Device Control and

Discloses Personal Information Without Authentication (Severity:

High)

Similar to the application interface, multiple information and administration pages for the Web

interface do not consistently authenticate credentials and rely solely on the device identifier

passed as a URL parameter, even where they may also require the child’s name.27 (The

CHILD_NAME parameter also creates issues in Reflected Cross-site Scripting (XSS) in Web

Interface Pages). These pages display the user’s installed applications and control the schedules

for when a child can use their phone. In the latter case, this vulnerability allows any individual

with the proper device identifier of a child to be able to completely disable the use of their

device.

Action Display User’s Installed Application

Address http://ss.moiba.or.kr/popup/popupApp.do?DAY=N&CHILD_MOBILE=C
hild Phone Number&CHILD_NAME=Arbitrary String

27 CLSI participants.

 25

Action Administer Usage Schedule

Address http://ss.moiba.or.kr/popup/popupDay.do?DAY=N&CHILD_MOB
ILE=Child Phone Number&CHILD_NAME=Arbitrary String

 26

http://ss.moiba.or.kr/popup/popupAll.do?DAY=N&CHILD_MOB
ILE=Child Phone Number&CHILD_NAME=Arbitrary String

Issue 3.10: Smart Sheriff Web Interface Allows Account Access and

Discloses Personal Information Through Unauthenticated Web

Interface API Queries (Severity: High)

The Web interface uses AJAX requests to communicate with back-end APIs for access to

information and to administer accounts.28 In several cases, these APIs appear to blindly accept

obtainable parameters, such as the device identifier or phone number, for retrieving information

and modifying accounts. Furthermore, the Web interface’s queries are often not checked against

expectations of what accounts a user is expected to have access to (i.e., that parents should be

able to modify the information of their own children only), and may not even check whether any

user is logged in. This lack of verification could lead to the mass compromise of user accounts or

removal of all Smart Sheriff accounts.

These operations are performed through POST requests of values to endpoints under the /ajax

URL, primarily identified based on telephone numbers or device identifiers. For example, APIs

that control the change of login credentials do not check whether the requester is a parent of that

child or the owner of the account. The same is true for account registration and scheduling times

28 CLSI participants.

 27

when children can use the mobile device. The Web interface appears to pass a large number of

parameters to each API method, whether they are used or not. The account deletion endpoint

ajax/ajaxDeleteAgree.do, which triggers the child’s installation of an application to

unlock administrative control and delete itself from the phone, mostly passes the same variables.

While our audit examined only a limited number of queries, it is clear that an attacker who has

enumerated the phone numbers could potentially change the PINs of parental accounts, remotely

disable devices, and even disclose personal information for all Smart Sheriff users.

Action Changes User Information, Including Password.

Host ss.moiba.or.kr

Resource POST /ajax/ajaxUpdateMember.do

Sent

Urlencoded

PARENT_MOBILE=Parent Phone Number&

CHILD_MOBILE=Child Phone Number&

CHILD_BIR_YMD=Child Date of Birth&

DELETE_LIST=Child Numbers to Delete from Parent’s Account&

NAME=Name&

PASS=Parental Pincode&

PASS_CNFM=Parental Pincode&

EMAIL=Email Address&

CHILD_NAME=Child Name&

CHILD_NCKNM=Child Name&

BIR_YMD=Date of Birth&

CHILD_SEX=Child Gender&

CHILD_BLCK_GRADE=Child Blocking Level

Returns HTTP 201

Inadequate Protection for Locally Stored Data

 28

Issue 4.1: Unsafe Mobile App Data Storage on SD Card (Severity:

Low)

Smart Sheriff defeats the built-in protections provided by the Android operating system by

saving sensitive data in plaintext on the SD card, which other applications can write to or read

from.29

Issue 4.2: Lack of Storage Protections on the Mobile Application

(Severity: Low)

Smart Sheriff does not implement any form of cryptographic protection on the mobile internal

storage. 30 All data are stored in unencrypted plaintext and can be accessed by anyone with

access to the phone.

Issue 4.3: Multiple Insecure Concatenations on Mobile App

(Severity: Low)

Smart Sheriff does not follow security best practices and performs a large number of string

concatenations for generating SQL queries and intents.31 In addition to this, there is no apparent

input validation preceding these concatenations. Below are examples found during the security

audit.

Affected Code source/src/kr/co/wigsys/sheriff/b/a.java

obj6 = ((PackageManager) (obj3)).queryIntentActivities(((Intent) (obj4)),
8192);

obj7 = ((PackageManager) (obj5)).queryIntentActivities(((Intent) (obj)),
8192);

kr.co.wigsys.sheriff.d.a.c(kr.co.wigsys.sheriff.d.c.b(), (new

StringBuilder(“[] App = [“).append(s).append(“] stop db update ret_value =
[￼]”).toString());

29 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 8.
30 Ibid., p. 10.
31 Ibid., p. 15.

 29

It appears there is no sanitization of queries against the SQLite stored locally on the phone. Since

Smart Sheriff synchronizes this information against the remote service, it may be possible to

perform a SQL injection again against this database to disclose private information, such as the

administrative PIN, or to delete parent-set schedules or limitations. While most changes from the

parent are pushed to the device through GCM, some information is still synchronized in the

clear. In the latter case, this could provide for a man-in-the-middle attack. Even where GCM is

used, it is unlikely that parameters entered into the Web interface are sanitized before being

pushed to the device, creating another vector for injection.

Failures to Sanitize Input Data
Issue 5.1: Reflected Cross-site Scripting (XSS) in Application

Interface Pages (Severity: Medium)

The member registration form on the application interface fails to sanitize user-input prior to

rendering it on the HTML page.32 This could be leveraged by an attacker to execute JavaScript in

the security context of the ssweb.moiba.or.kr domain and provide a means to impersonate

application users and interfere with the application.

Action curl -s --data
‘OS_TYPE=A&CHILD_MOBILE=<script>alert(1)</script>‘
‘http://ssweb.moiba.or.kr/member/pmemberRegisterPwdForm’

Response ...

<td class=“telnum”>

<p> <script>alert(1)</script> </p>

...

Issue 5.2: Reflected Cross-site Scripting (XSS) in Web Interface

Pages (Severity: Medium)

The Web interface page for installed applications, discussed in the context of user information

disclosure at Smart Sheriff Web Interface Allows Account Access and Discloses Personal

Information Without Authentication includes parameters that are embedded in the page without

sanitization.33 The CHILD_NAME parameter is decorative — it’s used for passing the child’s

32 Ibid., p. 8.
33 CLSI participants.

 30

name to the page but it is not matched against the actual child name for authentication. This can

be used by an attacker to launch malicious Javascript using the credentials of a logged-in user.

Action curl -s --data ‘

http://ss.moiba.or.kr/popup/popupApp.do?DAY=N&CHILD_MOBILE=C
hild Mobile&CHILD_NAME=<script>alert(1)</script>‘

Response ...

<th>자녀 별칭</th>

<td><span
id=“childName”><script>alert(1)</script></td>

...

Issue 5.3: Stored Cross-site Scripting (XSS) from Web Interface

Pages (Severity: Medium)

The Web interface pages and APIs discussed in Smart Sheriff Web Interface Allows Account

Access and Discloses Personal Information Through Unauthenticated Web Interface API Queries

do not sanitize input during entries of information, or within the back-end API.34 As a result,

malicious Javascript can be inserted into browsing sessions through modification of information,

such as children’s name. Failures of the Smart Sheriff service to validate user data changes, or

account associations made through the API, increase the risk of this vulnerability being

leveraged against end users, especially when they can be done en masse against its entire user

base.

34 CLSI participants.

 31

Stored XSS through changing the child name achieved against an example parent account through an

unauthenticated Web interface API.

Other Issues and Misconfigurations

Other noteworthy findings did not immediately lead to an exploit but they might aid attackers in

achieving malicious compromise in the future. Most of these reported issues are vulnerable code

snippets that did not provide an easy way to be called, or that were not explored further because

of the numerous issues that could be readily exploited.

Issue 6.1: Smart Sheriff Test-Pages and Other Found Resources

Leaks Application Internals (Severity: Low)

The sites and services that Smart Sheriff communicates with contain pointers and URLs

exposing debug pages, test applications, and similar resources that should never be published on

a production system.35 These pages deliver significant internal information that could later be

used to exfiltrate data, enumerate private infrastructure information, and carry out further attacks.

Information Leakage on ssweb.moiba.or.kr:

● http://ssweb.moiba.or.kr/index_.jsp

● http://ssweb.moiba.or.kr/html/filelist.html

35 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 5.

 32

Information Leakage on ssadm.moiba.or.kr when retrieved without Javascript:

Contents of `curl -i ‘http://ssadm.moiba.or.kr/’`

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<meta http-equiv=“Content-Type” content=“text/html; charset=utf-8”>

<script type=“text/javascript”>

//window.onload = function(){

 document.location.href = “/index”;

//}

</script>

</head>

<body>

관리자메인

서브메인메인

유해정보관리

 앱관리

 사이트관리

 33

 앱/사이트 접수 관리

가입자관리

민원관리

홈페이지

<p>

디자인

Push TEST

Live Push TEST

log Push Test</br>

</p>

</body>

Among the highlighted parts the URL

http://ssadm.moiba.or.kr/html/filelist.html is particularly interesting. It is

available without any authentication and reveals a large amount of further information, including

some of URLs listed below.

 34

http://ssadm.moiba.or.kr/html/petition/petition_list.html

http://ssadm.moiba.or.kr/html/petition/petition_history.ht

ml

http://ssadm.moiba.or.kr/html/petition/petition_push.html

http://ssadm.moiba.or.kr/html/petition/petition_sms.html

http://ssweb.moiba.or.kr/html/filelist.html

http://ssweb.moiba.or.kr/html/childmag/childinfo.html

http://ssadm.moiba.or.kr/html/homepage/board_list.html#

http://ssadm.moiba.or.kr/html/member/appversion.html#

http://ssadm.moiba.or.kr/html/member/institution.html

http://ssadm.moiba.or.kr/html/harmfulinfo/acceptlist.html

http://ssadm.moiba.or.kr/html/cleanwave_main_in.html#

These addresses appear to demonstrate at least an initial version of the administrative interfaces

for the Smart Sheriff application that is used to manage user accounts, restrict access to sites, and

display a log of user interactions for all users. Given the authentication issues noted previously,

these pages may leak information on vulnerable administrative APIs.

 35

Issue 6.2: SSL Misconfiguration on MOIBA Resources (Severity:

Medium)

Smart Sheriff’s back-end server (IP address 211.110.12.203) is within the published IPv4

range 211.110.8.0 - 211.110.15.255 (/21) assigned to:

Network Name: HANANET-INFRA

Organization Name: SK Broadband Co Ltd

Address: 267, Seoul Jung-gu Toegye-ro

Zip Code: 100-711

MOIBA serves a number of APIs, application interfaces, and sites from the same host located at

address 211.110.12.203 (at least the domains api.moiba.or.kr, ssweb.moiba.or.kr,

ssadm.moiba.or.kr, ss.moiba.or.kr, and sd.moiba.or.kr are associated with this

IP).36 Host names registered to the moiba.or.kr domain according to DNS records for this range

include:

211.110.12.196 www, info, m, mis, mt

211.110.12.203 sd, ss

211.110.15.5 ns1

211.110.15.6 ns2

The SSL certificate for the server was issued by Comodo using the wildcard *.moiba.or.kr.

36 Ibid., p. 13 and CLSI participants.

 36

While 211.110.12.203 does support SSL and appears to properly handle the same requests

over HTTPS, it is not properly configured to support modern TLS ciphersuites and has not

discontinued support for features or protocols that are known to allow compromise of

communications.37

37 https://www.ssllabs.com/ssltest/analyze.html?d=api.moiba.or.kr&hideResults=on

 37

SSL-Labs Test Report (api.moiba.or.kr)

● Prone to MiTM attacks via insecure renegotiation

● SSL 3 support

● Weak (SHA1) certificate signature

● The server solely supports old protocols like

SSLv3 and TLS 1.0

● The insecure RC4 cipher is supported

● Secure renegotiation is not supported

● Forward Secrecy is not supported

● The server certificate chain is incomplete

Issue 6.3: Resources Out of Date, Potentially Vulnerable (Severity:

Medium)

The 211.110.12.203 default page publishes the Apache Tomcat version 6.0.29 to the browser

(e.g., a 405 page) showing software released in 2010.38 Version 6.0.29 is known to have thirty-

five vulnerabilities including the following:

● CVE-2014-0230 – CVSS 7.8. Apache Tomcat 6.x before 6.0.44, 7.x before 7.0.55, and

8.x before 8.0.9 does not properly handle cases where an HTTP response occurs before

finishing reading an entire request body. Thus, it allows remote attackers to cause a

denial of service (memory consumption) via a series of aborted upload attempts.

● CVE-2011-3190 – CVSS 7.5. Certain AJP protocol connector implementations in

Apache Tomcat 7.0.0 through 7.0.20, 6.0.0 through 6.0.33, 5.5.0 through 5.5.33, and

possibly other versions, allow remote attackers to spoof AJP requests, bypass

authentication, and obtain sensitive information by causing the connector to interpret a

request body as a new request.

● CVE-2013-2067 – CVSS 6.8. The form authentication feature in Apache Tomcat 6.0.21

through 6.0.36 and 7.x before 7.0.33 does not properly handle the relationships between

authentication requirements and sessions. This allows remote attackers to inject a request

into a session by sending this request during a completion of the login form. This is a

variant of a session fixation attack.

38 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 14 and CLSI participants.

 38

Also this server runs Apache/2.0.65, released in 2013, which is no longer supported. The current

version of Apache is 2.4.16 (two major versions newer than Apache/2.0.65). The server is

configured with Tomcat Connector (mod_jk) version 1.2.37, released June 2012. The current

version is 1.2.40.

Certain URLs may be processed by an even older / unsupported version (Apache/2.0.59)

released in 2007.39 The older version of Apache could be a forged header inserted by a load

balancer, application firewall, or proxy. The Citrix Netscaler load balancer was detected with

high probability. This also may introduce vulnerabilities such as a bypass using “HTTP Header

Pollution” (CVE-2015-2841).

Apache/2.0.59, if in fact used, is known to have twenty-eight vulnerabilities including:

● CVE-2011-3192 – CVSS 7.8. The byte range filter in the Apache HTTP Server 1.3.x,

2.0.x through 2.0.64, and 2.2.x through 2.2.19 allows remote attackers to cause a denial

of service (memory and CPU consumption) via a Range header that expresses multiple

overlapping ranges. It was exploited in the wild in August 2011 and constitutes a

vulnerability different from CVE-2007-0086.

● CVE-2013-2249 – CVSS 7.5. mod_session_dbd.c in the mod_session_dbd module in the

Apache HTTP Server before 2.4.5 proceeds with save operations for a session without

considering the dirty flag and the requirement for a new session ID, which signifies

unspecified impact and remote attack vectors.

● CVE-2009-1890 – CVSS 7.1. When a reverse proxy is configured, the

stream_reqbody_cl function in mod_proxy_http.c in the mod_proxy module in the

Apache HTTP Server before 2.3.3 does not properly handle an amount of streamed data

that exceeds the Content-Length value. This allows remote attackers to cause a denial of

service (CPU consumption) via crafted requests.

● CVE-2009-1891 – CVSS 7.1. The mod_deflate module in Apache httpd 2.2.11 and

earlier compresses large files until completion, even after the associated network

connection is closed. It allows remote attackers to cause a denial of service (CPU

consumption).

These out-of-date services put the Smart Sheriff infrastructure at an extremely high likelihood of

compromise or error. Versions should be current and patch levels should be no more than days or

weeks behind at the very most.

The Apache services also appear to be misconfigured, leaving default documents and test code

that also can be used to enumerate and compromise infrastructure.

39 Identified in the HTTP response header as “Apache/2.0.59 HP-UX_Apache-based_Web_Server (Unix) DAV/2

mod_jk/1.2.27-dev”

 39

● HTTP TRACE is enabled, suggesting the host is vulnerable to XST.

● X-Frame-Options header is not included in HTTP response: Clickjacking possible.

● inodes are leaked via ETags: 0xW/5222 0x138987 5471000

● Cookie JSESSIONID is created without httponly flag, allowing access by JavaScript. A

malicious script could transmit cookies to another site. A session cookie transmission

would enable session hijacking.

● /test/ directory: RSS feed, test result {“rslt”:”ok”}

● /docs/ directory: Apache Tomcat 6.0

● Default files, such as example servlets, should not be kept on server.

● Javascript on the server also leaks gratuitous and personal details. For example

/js/common.js repeatedly sends a comment to users that could be useful in phishing or

revealing further issues:

DATE VER DEVELOPER

2008.12.01 1.0 PARK HAK JIN

Issue 6.4: Development Resources Exposed and Domains Possibly

Open for Registration (Severity: Low)

Although the Korean Mobile Internet Business Association is the public distributor of Smart

Sheriff, the primary developer appears to have been a company called at varying times “101GT”

or “Wigsys.”40 The mobile app reveals a number of URLs that reside on MOIBA hosts that

should neither be exposed to the Internet nor included in the sources of a production app. This

includes URLs from the following list, specifically URLs that indicate that their sole purpose is

to offer test and debug features:

● http://192.168.0.5:8083
● http://220.117.226.129
● http://220.117.226.129:8082
● http://220.117.226.129:9090/demo-gcm-server
● http://hikdev.cafe24.com/demo-gcm-server

While some of these addresses are internal network references or currently inaccessible, it is

assumed that the demo servers and debug software increase the attack surface. The application

has embedded to it multiple references to development properties, including a site at the address

hikdev.cafe24.com that has expired. Additionally, other domain names associated with the

original developer have expired, and may provide resources or further private information on the

service. Given the gravity of other documented issues and the scope of this audit, this path was

not fully explored and may demonstrate further issues.

40 Cure53, “Pentest-Report Smart Sheriff 07.2015,” p. 15 and CLSI participants.

 40

Issue 6.5: Erroneous Queries Expose Internal Database Structure

(Severity: Low)

As noted previously, the Web interface for Smart Sheriff fails to consistently perform basic

validation of user input at the back end, allowing the submission of unsanitized or erroneous data

to the back-end Oracle database.41 Where non-null values are required for database operations,

such as correlating information in separate tables, the query will incur a database error that is

exposed to the user. This error includes query statements that disclose internal information,

which could lead to further enumeration of vulnerabilities.

We did not attempt to enumerate all potential database errors in consideration of broader issues

reported here as well as concerns about disruption of services. However, this both demonstrates

the absence of basic back-end filtering of requests and runs contrary to the core practice of

removing debug information on production systems.

Found Errors (Formatted for Readability)

org.springframework.dao.DataIntegrityViolationException:

Error updating database. Cause:

java.sql.SQLIntegrityConstraintViolationException: ORA-01400: NULL을

(“MOIBA”.”MTB_PARENT_INFO”.”PARENT_MOBILE”) 안에 삽입할 수 없습니다

The error may involve parent.parentDao.mergeParentChildInfo-Inline

The error occurred while setting parameters

SQL: MERGE INTO MTB_PARENT_INFO

USING DUAL ON (PARENT_MOBILE = ?, AND CHILD_MOBILE = ?)

WHEN NOT MATCHED THEN

INSERT (PARENT_MOBILE, CHILD_MOBILE, REG_ID, REG_DATE)
VALUES(?, ?, ?, SYSDATE)

WHEN MATCHED THEN

UPDATE SET MOD_ID = ?, MOD_DATE = SYSDATE

41 CLSI participants.

 41

Cause: java.sql.SQLIntegrityConstraintViolationException: ORA-01400:

NULL을 (“MOIBA”.”MTB_PARENT_INFO”.”PARENT_MOBILE”) 안에 삽입할 수 없습니다

; SQL []; ORA-01400: NULL을 (“MOIBA”.”MTB_PARENT_INFO”.”PARENT_MOBILE”)

안에 삽입할 수 없습니다

; nested exception is java.sql.SQLIntegrityConstraintViolationException:

ORA-01400: NULL을 (“MOIBA”.”MTB_PARENT_INFO”.”PARENT_MOBILE”) 안에 삽입할 수

없습니다

org.springframework.dao.DataIntegrityViolationException:

Error updating database. Cause:

java.sql.SQLIntegrityConstraintViolationException: ORA-01400: NULL을

(“MOIBA”.”MTB_CHILD_INFO”.”CHILD_MOBILE”) 안에 삽입할 수 없습니다

The error may involve child.childDao.mergeChildInfo-Inline

The error occurred while setting parameters

SQL: MERGE INTO MTB_CHILD_INFO

USING DUAL ON (CHILD_MOBILE = ?)

WHEN NOT MATCHED THEN

INSERT (CHILD_MOBILE, CHILD_NAME, CHILD_NCKNM, CHILD_BIR_YMD,
CHILD_SEX, MEMBER_STAT_CD, STAT_MOD_DATE, REG_ID, REG_DATE,
REGISTRATION_ID, SMRT_PHN_OS, OS_TYPE, SERVICE_USE_AGREE_YN,
PRVT_INFO_USE_AGREE_YN, PRVT_INFO_OFFER_AGREE_YN,
PRVT_INFO_COL_AGREE_YN)

 VALUES(?, ?, ?, ?, ?, ‘01’, SYSDATE, ?, SYSDATE, ?,?, ?, ?, ?,
?, ?)

WHEN MATCHED THEN

UPDATE SET CHILD_NAME = ?, CHILD_NCKNM = ?, CHILD_BIR_YMD = ?,
MEMBER_STAT_CD = DECODE(MEMBER_STAT_CD,’03’,’02’,’01’),
STAT_MOD_DATE = SYSDATE, MOD_ID = ?, MOD_DATE = SYSDATE

Cause: java.sql.SQLIntegrityConstraintViolationException: ORA-01400:

NULL을 (“MOIBA”.”MTB_CHILD_INFO”.”CHILD_MOBILE”) 안에 삽입할 수 없습니다

 42

; SQL []; ORA-01400: NULL을 (“MOIBA”.”MTB_CHILD_INFO”.”CHILD_MOBILE”) 안에

삽입할 수 없습니다

; nested exception is java.sql.SQLIntegrityConstraintViolationException:

ORA-01400: NULL을 (“MOIBA”.”MTB_CHILD_INFO”.”CHILD_MOBILE”) 안에 삽입할 수

없습니다

Note on S-Dream

Smart Sheriff’s complementary message-monitoring application, S-Dream, was not within the

scope of our research because of its smaller installation base according to Google Play statistics.

However, on cursory inspection, we find similar failures to protect user data in transit that could

be further leveraged for disclosure of information, account access, or misrepresentation of user

behaviour through forged requests. S-Dream appears to report back messages that it deems to be

troublesome in the clear. Additionally, S-Dream appears to share common infrastructure, and

potentially code or APIs, with Smart Sheriff. The compromise of Smart Sheriff’s back end,

through either unauthenticated or unencrypted calls to the site, as well as the out-of-date software

stack, would similarly affect users of S-Dream.

Given these considerations and substantial findings on Smart Sheriff, we encourage further

evaluation of the practices and implementation of S-Dream, concurrent to addressing the issues

that we identify here.

