Regarding Baidu IME’s encryption protocol, we stand by our position that it is
significantly weaker than state-of-the-art encryption protocols.

Regarding performance and reliability, we understand your performance constraints. In fact,
many international network cryptography developers have found the same issues with
TCP+TLS. Now, cryptography experts recommend QUIC+TLS, which has one fewer round trip
for connection establishment. With session resumption, QUIC+TLS can also establish
connections within ORTT. We have also noticed that many other popular applications like
WeChat are using QUIC+TLS under certain circumstances.

Here is a blog post about this topic:
https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption

In addition, many network middleboxes and firewalls block unknown UDP or TCP protocols.
Due to the growing popularity of QUIC, middleboxes may be less likely to interfere with QUIC
traffic, making it a more reliable network transport.

Regarding privacy and security, QUIC+TLS provides much stronger security and privacy
guarantees. Given the sensitive nature of the data being transmitted, we cannot recommend
Baidu’s current encryption protocol.

In our report, we detail multiple issues related to Baidu IME’s current encryption protocol. In
particular, we note that it lacks the following cryptographic properties:

Lack of CPA-security (due to IV and key re-use)

Lack of diffusion (due to the use of its nonstandard CTR mode)
Lack of forward secrecy

Lack of message integrity

All four of these cryptographic properties are standard expectations of modern transit
encryption.

We did not mention the term CPA-security in the report, but we will explain here. Because the
mode of encryption is deterministic (as the key and IV are re-used), it cannot be secure against
a chosen-plaintext attack, which is the baseline for provable security in a cryptographic scheme.

This means that Baidu IME’s encryption scheme leaks information. An attacker could identify,
for instance, if two ciphertexts encrypted by Baidu contain the same underlying plaintext; e.g.,
by comparing the ciphertexts of two encrypted messages, if they match, that means that the
plaintexts are the same. Similarly, if any 16-byte ciphertext blocks are the same, that means that
the underlying plaintexts are the same.

https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption
https://en.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://joyofcryptography.com/pdf/chap7.pdf

The sensitive data encrypted by Baidu IME (namely, keystrokes) is highly valuable to a potential
attacker. The information leaked via this deterministic encryption mode is significant enough that
a sufficiently motivated attacker could learn more about what a particular user is typing.

As a visual example, we performed an entropy analysis of Baidu IME payloads as compared to
TLS1.2 data packets and QUIC+TLS data packets, with N=1,000 samples each, demonstrated
in Figure 1.

Per-byte entropy of encrypted data packets
Baidu IME TLS 1.2 flags QUIC

8 0- [conn_id ----] 8

7 24 7 2

44 6 4 6 4 6

61 5 6 5 6 5

81 4 8 4 81 4

10 3 10 4 3 10 4 3

124 2 12 4 2 124 2

144 1 144 1 14 4 1

T T T T T T T T T T T T T T 1] 16 T T T T T T T
o] 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 o] 2 4 6 8 10 12 14 16

Figure 1: From left-to-right, an annotated visual representation of each byte’s entropy for the first
256 bytes of Baidu, TLS1.2, and QUIC data payloads, with N=1,000 samples each. Differing
annotation colors are intended for readability and contrast.

To generate these images, we calculate the Shannon entropy of each byte of each payload,
across N observed payloads. The top-left square represents the first byte of the payload, the
square in the first row, second column is the second byte of the payload, etc. In the Baidu
image, the first two bytes are black because they are always “0x04 0x00”, so the entropy is 0. In
the TLS image, the first three bytes also have 0 entropy because TLS 1.2 data records always
begin with “0x17 0x03 0x03”. In the QUIC image, the first byte has less entropy because it is
used for various flags; then the following 6 bytes have lower entropy since they represent the
connection ID.

The maximum entropy for a square is log,2® = 8 bits since there are 28 possible values of a byte.
The code to generate these graphs is available here.

To ensure cryptographic protocols do not leak any information about the underlying protocol,
encrypted data should be indistinguishable from random data. This is the reasoning behind
the CPA model of cryptanalysis. The above figure visually demonstrates that the entropy of
data encrypted by Baidu is significantly lower than the state-of-the-art, meaning that there is a
large amount of information leakage that could be exploited by a motivated actor.

Below, we have reproduced the relevant portion of the original report.

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://gist.github.com/m0namon/5279db36c708b31f3aebe3ec3788f45c
https://en.wikipedia.org/wiki/Chosen-plaintext_attack

Privacy issues with key and IV re-use

Since the IV and key are both directly derived from the client key pair, the IV and key are reused
until the application generates a new key pair. This only happens when the application restarts,
such as when the user restarts the mobile device, the user switches to a different keyboard and
back, or the keyboard app is evicted from memory. From our testing, we have observed the
same key and |V in use for over 24 hours. There are various issues that arise from key and IV
reuse.

Re-using the same IV and key means that the same inputs will encrypt to the same encrypted
ciphertext. Additionally, due to the way the block cipher is constructed, if blocks in the same
positions of the plaintexts are the same, they will encrypt to the same ciphertext blocks. As an
example, if the second block of two plaintexts are the same, the second block of the
corresponding ciphertexts will be the same.

Weakness in cipher mode

The electronic codebook (ECB) cipher mode is notorious for having the undesirable property
that equivalent plaintext blocks encrypt to equivalent ciphertext blocks, allowing patterns in the
plaintext to be revealed in the ciphertext (see Figure 2 for an illustration).

Figure 2: When a bitmap image (left) is encrypted in ECB mode, patterns in the image are still
visible in the ciphertext (right). Adapted from these figures.

While BCTR mode used by Baidu does not as flagrantly reveal patterns to the same extent as
ECB mode, there do exist circumstances in which patterns in the plaintext can still be revealed
in the ciphertext. Specifically, there exist circumstances in which there exists a counter-like
pattern in the plaintext which can be revealed by the ciphertext (see Figure 3 for an example).
These circumstances are possible due to the fact that (IV + /) is XORed with each plaintext
block i and then encrypted, unlike ordinary CTR mode which encrypts (IV + /) and XORs it with
the plaintext. Thus, when using BCTR mode, if the plaintext exhibits similar counting patterns as

https://commons.wikimedia.org/wiki/File:Tux.svg#/media/File:Tux.svg
https://commons.wikimedia.org/wiki/File:Tux_ECB.png#/media/File:Tux_ECB.png

(IV + i), then for multiple blocks the value ((IV + i) XOR plaintext block /) may be equivalent and
thus encrypt to an equivalent ciphertext.

Block Plaintext Ciphertext
0 |oofoolooloo]oofooloojoofoofooloojoofoofooloofoole2|d4|oo]ic|cél5dls0|33|0clbol48|7d|d5[27|72]7a
1 |oz|oofoolooloo]oojoofoofoojoofoolooloofoofooloole2]d4|oo|1c|c6|5dl80[33|0cibol48|7d|as|27|72]7a
Figure 3: When encrypted with the randomly generated key
“Wx96fx08\xd10\x80\x82\x86\xa7\xb7\xdaC\x96\xee\xd 1\xa2” and IV “H[T\x92\x0c\x80\xa6
)o\x95\xe5\xc5j=\xe2” using Baidu’s modified CTR mode, the above plaintext blocks in positions
0 and 1 encrypt to the same ciphertext.

More generally, BCTR mode fails to provide the cryptographic property of diffusion. Specifically,
if an algorithm provides diffusion, then, when we change a single bit of the plaintext, we expect
half of the bits of the ciphertext to change. However, the example in Figure 3 illustrates a case
where changing a single bit of the plaintext caused zero bits of the ciphertext to change, a clear
violation of the expectations of this property. The property of diffusion is vital in secure
cryptographic algorithms so that patterns in the plaintext are not visible as patterns in the
ciphertext.

Other privacy and security weaknesses

There are other weaknesses in the custom encryption protocol designed by Baidu IME that are
not consistent with the expected standards for a modern encryption protocol used by hundreds
of millions of devices.

Forward secrecy issues with static Diffie-Hellman

The use of a pinned static server key means that the cipher is not forward secret, a property of
other modern network encryption ciphers like TLS. If the server key is ever revealed, any past
message where the shared secret was generated with that key can be successfully decrypted.

Lack of message integrity

There are no cryptographically secure message integrity checks, which means that a network
attacker may freely modify the ciphertext. There is a CRC32 checksum calculated and included
with the plaintext data, but a CRC32 checksum does not provide cryptographic integrity, as it is
easy to generate CRC32 checksum collisions. Therefore, modifying the ciphertext may be
possible. In combination with the issue concerning key and IV reuse, this protocol may be
vulnerable to a swapped block attack.

https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://en.wikipedia.org/wiki/Forward_secrecy

