
UNMASKED
COVID-KAYA and the Exposure of
Healthcare Worker Data in the
Philippines
By Pellaeon Lin, Jeffrey Knockel, Adam Senft, Irene Poetranto,
Stephanie Tran, and Ron Deibert

NOVEMBER 10, 2020
RESEARCH REPORT #132

ii

Copyright
© Citizen Lab

Licensed under the Creative Commons BY-SA 4.0 (Attribution-ShareAlike
licence). Electronic version first published in 2020 by the Citizen Lab. This
work can be accessed through https://citizenlab.ca/2020/11/unmasked-covid-
kaya-and-the-exposure-of-healthcare-worker-data-in-the-philippines/.

Document Version: 1.0

The Creative Commons Attribution-ShareAlike 4.0 license under which this
report is licensed lets you freely copy, distribute, remix, transform, and build
on it, as long as you:

•	 give appropriate credit;

•	 indicate whether you made changes; and

•	 use and link to the same CC BY-SA 4.0 licence.

However, any rights in excerpts reproduced in this report remain with their
respective authors; and any rights in brand and product names and associ-
ated logos remain with their respective owners. Uses of these that are
protected by copyright or trademark rights require the rightsholder’s prior
written agreement.

Suggested Citation
Pellaeon Lin, Jeffrey Knockel, Adam Senft, Irene Poetranto, Stephanie Tran, and Ron
Deibert. “Unmasked: COVID-KAYA and the Exposure of Healthcare Worker Data in the
Philippines,” Citizen Lab Research Report No. 132, University of Toronto, November
2020.

iii

About the Citizen Lab, Munk School of Global Affairs & Public
Policy, University of Toronto

The Citizen Lab is an interdisciplinary laboratory based at the Munk School of Global
Affairs & Public Policy, University of Toronto, focusing on research, development, and
high-level strategic policy and legal engagement at the intersection of information and
communication technologies, human rights, and global security.

We use a “mixed methods” approach to research that combines methods from political
science, law, computer science, and area studies. Our research includes investigating
digital espionage against civil society, documenting Internet filtering and other technol-
ogies and practices that impact freedom of expression online, analyzing privacy, security,
and information controls of popular applications, and examining transparency and
accountability mechanisms relevant to the relationship between corporations and state
agencies regarding personal data and other surveillance activities.

Acknowledgements
Thanks to Miles Kenyon for review and comments.

CITIZEN LAB RESEARCH REPORT NO.132 1

The key findings for this report is translated in Tagalog and can be found here.

Key Findings
	› COVID-KAYA, a platform used by frontline healthcare workers in the Philippines

to collect and share COVID-19 cases with the Philippines Department of Health,
contained vulnerabilities in both the web and Android apps that allows for
unauthorized users to access private data about the app’s users, and potentially
patient data.

	› The COVID-KAYA web app contained a vulnerability in its authentication logic,
allowing otherwise restricted access to API endpoints, exposing the names
and locations of health centres as well as the names of over 30,000 healthcare
providers who have signed up to use the app. We are concerned (but did not
confirm) that an attacker could have also leveraged this vulnerability to cause
the app to reveal sensitive patient data.

	› The COVID-KAYA Android app used hardcoded API credentials that also allowed
access to the names of healthcare providers. We are concerned but were unable
to confirm that an attacker could have also leveraged these vulnerabilities to
cause the app to reveal sensitive patient data.

	› We first disclosed the web app vulnerability to the app’s developers on August
18, 2020, and the Android app’s vulnerability on September 14, 2020. As of
October 29 2020, we confirmed that the issues identified had been resolved and
the leaked credentials had been invalidated.

Summary
As part of the Citizen Lab’s ongoing research on the security and privacy of COVID-19
applications, we analyzed the web and Android versions of COVID-KAYA, an app used by
healthcare workers in the Philippines to collect and share data about COVID-19 cases.
Our analysis found that both of these versions of COVID-KAYA contain vulnerabilities
disclosing data otherwise protected by “superuser” credentials.1

The COVID-KAYA web app contains a vulnerability in its authentication logic allowing
an attacker to access at least the names and locations of health centres, as well as the

1	 A superuser is a user leveraging a superuser account, which may have virtually unlimited privileges
over a system.

https://citizenlab.ca/2020/11/covid-kaya-and-the-exposure-of-healthcare-worker-data-in-the-philippines-tagalog
https://kaya.gocovid-19.org/covidkaya/#!/fragments/signin.html

UNMASKED2

names of over 30,000 healthcare providers who have signed up to use the app. We are
concerned but did not confirm that an attacker could also leverage this vulnerability to
cause the app to reveal sensitive patient data.

The COVID-KAYA embeds a hardcoded credential that allows access to its internal APIs.
We demonstrated that this credential can successfully authenticate and use the APIs to
obtain the names and locations of health centres, as well as the names of over 30,000
healthcare providers who have signed up to use the app. However, as with the web app,
we could not demonstrate that this credential could be used to reveal patient data.

We disclosed both of these vulnerabilities to those responsible for COVID-KAYA’s develop-
ment, including Dure Technologies, the Philippines Department of Health, and the World
Health Organization (WHO) Philippines. Both disclosures were acknowledged by Dure
Technologies within a day of our disclosure. (For details, see “Vulnerability Disclosure”
section, below).

Background
Released on June 2, 2020, COVID-KAYA allows healthcare workers to automate the
reporting of COVID-19 cases to the Philippines Department of Health (DOH) and facil-
itate the country’s contact tracing efforts. COVID-KAYA was jointly developed by the
Philippines DOH Epidemiology Bureau, the World Health Organization (WHO), and Dure
Technologies,2 a technology company with offices in Switzerland and India, in coordina-
tion with the Philippines Department of Information and Communications Technology.
Following the app’s launch, the United States Agency for International Development
(USAID) Philippines announced that it had conducted a series of web training sessions
to help healthcare staff learn how to use COVID-KAYA and input essential data for case
tracking and contact tracing.

The COVID-KAYA platform is accessible from a web app, as well as Android and iOS apps.
COVID-KAYA is built using Cordova, a cross-platform application development framework,
which allows developers to build applications using web technologies (Javascript, HTML,
and CSS) and then deploy the same code to Android, iOS, and the web. We examined
both the web and Android versions of the COVID-KAYA platform to identify any security
or privacy concerns.

2	 Although there has been no mention of Dure Technologies’ involvement with the app in government
press releases and media reports, an email address under Dure Technologies’ domain (contact@
duretechnologies.com) is listed under the Developer section of COVID KAYA’s Google Play Store
page. In addition, Dure Technologies is listed as the copyright owner in one of the source files: www/
fragments/getstarted.html.

https://pia.gov.ph/news/articles/1043602
https://pia.gov.ph/news/articles/1043602
https://mb.com.ph/2020/07/22/pldt-enterprise-enables-free-access-to-who-dohs-covid-kaya-tracing-app/
https://www.devex.com/organizations/dure-technologies-99101
https://www.facebook.com/usaid.philippines/posts/3524642484268719
https://cordova.apache.org/
https://pia.gov.ph/news/articles/1043602
https://pia.gov.ph/news/articles/1043602
https://mb.com.ph/2020/07/21/duterte-confident-govt-can-carry-out-covid-19-contract-tracing/
https://play.google.com/store/apps/details?id=org.who.COVIDKAYA&hl=en&gl=US
https://play.google.com/store/apps/details?id=org.who.COVIDKAYA&hl=en&gl=US

CITIZEN LAB RESEARCH REPORT NO.132 3

Technical Findings
In this section we present our technical findings from our analysis of the COVID-KAYA
web and Android apps.

Findings in COVID-KAYA Web App
On August 17, we analyzed the COVID-KAYA web app as available at the following URL:

https://kaya.gocovid-19.org/covidkaya/

In the remainder of this section we describe a vulnerability in the web app’s authenti-
cation logic that allowed us to access sensitive data normally protected by a superuser
login credential.

Authentication logic vulnerability
In analyzing the web app, we found that the app is ostensibly protected with a login page
requiring signing in with a valid username or password. We observed that, if signing
in with an invalid username or password, the web app reported that the username or
password were incorrect (see Figure 1).

 Figure 1: Login failure error message displayed by COVID-KAYA web app.

However, in our testing, we found that, after attempting to sign in with an invalid
username or password, the web app appeared to grant us, without notification, access
to API endpoints and tools normally unavailable to users who were not logged in. These
API endpoints and tools were easily discoverable. We discovered one such API endpoint
by taking the publicly accessible end point for resetting a user’s forgotten password,

UNMASKED4

https://kaya.gocovid-19.org/service/api/rtmpro/subscribe/password/forgot

and then deleting part of the URL, as follows

https://kaya.gocovid-19.org/service/api/

This URL redirected us to

https://kaya.gocovid-19.org/service/api/resources

This page appeared to be a master directory of API endpoints. One such endpoint in the
directory was

https://kaya.gocovid-19.org/service/api/users

which appeared to be capable of enumerating all 30,087 (at the time of access) users of
the app.

 Figure 2: API endpoint showing user’s full names (redacted).

Each user entry included the user’s username and full first and last names. The list
appeared to be ordered by last name (see Figure 2).

By deleting more of the URL, we tried browsing to

https://kaya.gocovid-19.org/service/

which redirected to the following URL:

https://kaya.gocovid-19.org/service/dhis-web-dashboard-integration/index.html

CITIZEN LAB RESEARCH REPORT NO.132 5

We found that the resulting resource contained an instance of the DHIS 2 dashboard
product.

 Figure 3: User profile information displayed by web app, despite us not having a valid
username/password.

Moreover, we found that we were logged in as a user with name “DONOTDELETE
DONOTDELETE” and email address was@qualys.com (see Figure 3).

 Figure 4: User profile shows the language configured to a string resembling an SQL injection
attack.

We noticed that the language specified for this user had been previously chosen to be
a string resembling an SQL injection attack (see Figure 4). Since we did not attempt
this attack, this finding suggests that we may not have been the first to have obtained
unauthorized access to the web app in this fashion, which grants access to edit the profile
of this user’s account. Thus, the web app may have been the subject of previous unautho-
rized access and attacks.

At the home page of the dashboard, information was immediately available concerning
which health centers and healthcare providers were affiliated with the app, as organized
by country and city (see Figure 5).

https://www.dhis2.org/
https://www.sqlinjection.net/time-based/

UNMASKED6

 Figure 5: Dashboard displaying healthcare providers affiliated with the app.

To determine whether we were looking at dummy data versus authentic data, we searched
for two of the names of users who had left reviews of the app in the Google Play Store.

 Figure 6: Screenshots of Google Play Store reviews (left) and web app dashboard (right)
showing a match between public reviewers and the web app user list.

The names of both Google Play Store reviewers appeared to be among users of the app
(see Figure 6). At this point, we determined that the data accessible were authentic and
not dummy data, and we ended our investigation into the dashboard. Thus, we did
not determine if patient data were accessible through any API endpoint or through the
dashboard. However, given the advertised capabilities of the app, our concern is that
patient data may have been accessible.

CITIZEN LAB RESEARCH REPORT NO.132 7

Findings in COVID-KAYA Android App
We analyzed version 1.4.7 (Android version code 10407) of the COVID-KAYA Android App,
as downloaded from Google Play Store on August 17, 2020.

We found that COVID-KAYA’s application source code contains a source file ‘application/
keys.js’, which declares a global variable ‘appKeys’, containing the following content:

{
 "services": {
 "baseURL": "https://kaya.gocovid-19.org/",
 "api": "https://kaya.gocovid-19.org/service/api/rtmpro/",
 "getApi": "https://kaya.gocovid-19.org/service/api/",
 "isOffline": false
 },
 "authKey": "Basic RE9OT1RERUxFVEU6RE9OT1RERUxFVEVAMTIz",
 "salt": "iMONITORPLUSAPISALT",
 [...]
}

Notably, the ‘authKey’ field specifies hard-coded HTTP Basic Authentication credential
which are used by the app to access various COVID-KAYA APIs. In the remainder of this
section we describe how this hard-coded credential can be used to access the DHIS web
interface as well as present evidence that this credential may be used to access sensi-
tive data from API endpoints.

Credential leak from hard-coded HTTP Basic Authentication
header

According to the specification of HTTP Basic Authentication, the Authorization header
value is simply a base64 encoded string of username and password joined by a colon.
Therefore we can calculate the original username and password by base64-decoding the
string, yielding the following:

DONOTDELETE:DONOTDELETE@123

Using username ‘DONOTDELETE’ and password ‘DONOTDELETE@123’, we found that we
can successfully log in to the DHIS dashboard described in the previous section.

https://tools.ietf.org/html/rfc7617

UNMASKED8

 Figure 7: Screenshot from COVID-KAYA web app showing ‘service unavailable’ error message
when logging in with ‘DONOTDELETE’ credentials

In order to learn more about this account, we also tried using these credentials to sign
into the COVID-KAYA web app. Upon login, the site displayed a “service unavailable”
message (see Figure 7). However, the actual API response from

https://kaya.gocovid-19.org/service/api/rtmpro/login

indicates that the login was successful. The response also reveals additional information
about the ‘DONOTDELETE’ account:

{
 "username": "DONOTDELETE",
 "firstname": "DONOTDELETE",
 "lastname": "DONOTDELETE",
 "orgname": "teststate",
 "orgid": "71326618",
 "orguid": "eYmB6Cr5QdH",
 "language": "",
 "dob": "",
 "gender": "",
 "programid": "",
 "userrole": "Superuser",
 "userroleid": "51",
 "programuid": "",
 "email": "was@qualys.com",
 [..]
}

CITIZEN LAB RESEARCH REPORT NO.132 9

Most notably, from this response, it appears that the ‘DONOTDELETE’ user is a superuser.

In our analysis of the COVID-KAYA web app, we showed how superuser access to the DHIS
dashboard reveals the full names of all healthcare providers and the names of all health
centres associated with COVID-KAYA. Similarly, using the credentials that we found in
the Android app, we found that signing into the DHIS dashboard using the hardcoded
‘DONOTDELETE’ credential also revealed the full names of all healthcare providers and
the names of all health centres associated with COVID-KAYA.

Authentication bypass using hardcoded API credential
We also experimented using this HTTP Basic Authentication credential to access API
endpoints in

https://kaya.gocovid-19.org/service/api/rtmpro/* ,

which are used in the COVID-KAYA app. One such API endpoint we explored is accessible at

https://kaya.gocovid-19.org/service/api/rtmpro/menu/getusermenurole .

We suspect that this API is used when healthcare providers log into the app to populate
a menu of options which they can use in the app. If we sent a request without the
‘Authorization’ header,

curl -v
'https://kaya.gocovid-19.org/service/api/rtmpro/menu/
getusermenurole'-H 'Content-Type: application/json' --data-raw
'{"programid":"300","apptype":"mobileapp","roleid":51,
"appversion":"1.4.7", "formversion":"","language":"en"}'

then, as we would expect, the server redirected to DHIS’s login page:

< HTTP/1.1 302 302
< Location: https://kaya.gocovid-19.org/service/dhis-web-
commons/security/login.action
< Content-Length: 0

However, if we made a request with the ‘Authorization’ header set to the value of the
hard-coded ‘authkey’,

curl
'https://kaya.gocovid-19.org/service/api/rtmpro/menu/
getusermenurole' -H 'Content-Type: application/json' -H
'Authorization: Basic RE9OT1RERUxFVEU6RE9OT1RERUxFVEVAMTIz'
 --data-raw '{"programid":"300","apptype":"mobileapp",
"roleid":51, "appversion":"1.4.7","formversion":"",
"language":"en"}'

UNMASKED10

we received the following response:

{"data":{},"status":"success"}

This response shows that we were able to successfully authenticate against this API. One
possible explanation for why we were not able to get data from this API endpoint is that,
although we were able to authenticate against this API, we may not have been authorized
to see any data that it returns. However, another explanation may be that the ‘programid’
value we supplied is somehow invalid. In our research, we could not find examples of
‘programid’ values such that the server would yield non-empty data response.

We tested a second API at

https://kaya.gocovid-19.org/service/api/rtmpro/hl7/searchpatient .

Ostensibly, by the name of the API, this endpoint appears capable of searching patient
data. As we would expect, without the ‘Authorization’ header the server again responded
with a redirect to a login page. However, if we sent the request with the ‘Authorization’
header,

curl
'https://kaya.gocovid-19.org/service/api/rtmpro/hl7/
searchpatient' -H 'Content-Type: application/json' -H
'Authorization: Basic RE9OT1RERUxFVEU6RE9OT1RERUxFVEVAMTIz'
--data-raw '{"name":"JOHN", "programid": "3",
"apptype":"mobileapp","roleid":51,
"appversion":"1.4.7","formversion":"","language":"en"}'

the server responded by asking users to reinstall their app:

{"status":"fail","message":"There is a new version of the
Mobile App available. Please kindly reinstall the App from the
below link
 URL: <a href='https://drive.google.com/drive/
folders/13FA1Qg1iVRKM9FqRfs_s70adGecXYdQr' target='_system'
class='external'>Click here to update app<\/b><\/a>

Incase you are accessing using Mobile Browser please close the
application and login again.","appupdate":true}

Again, we appear to be able to successfully authenticate against the API.

CITIZEN LAB RESEARCH REPORT NO.132 11

 Figure 8: COVID-KAYA reviews on Google Play Store showing users reporting they are asked to
reinstall the app

Although we were able to successfully authenticate against the API, it returned a message
providing a link with which to install a newer version of the app. While we do not know
why it returned this message, the message is consistent with users reviews on Google
Play Store, which report that the app keeps asking them to reinstall (see Figure 8). This
response may have been returned because the ‘DONOTDELETE’ user was not autho-
rized to access this API. Alternatively, this API endpoint may no longer be used by some
versions of the app.

In addition to API endpoints used by the app, we also tested the ‘authKey’ credential
against

https://kaya.gocovid-19.org/service/api/users

an endpoint we found in the previous section to reveal sensitive data in our earlier
analysis of the COVID-KAYA web app. Although this endpoint was not found to be used
by the Android app, in the previous section we had found it to be capable of enumerating
the full names of every healthcare provider using the app. To test the credentials we found
in the Android app on this endpoint, we first sent a request without the `Authorization`
header:

curl -v 'https://kaya.gocovid-19.org/service/api/users'

The server responded with a redirect to the login page:

UNMASKED12

< HTTP/1.1 302 302
< Location: https://kaya.gocovid-19.org/service/
dhis-web-commons/security/login.action
< Content-Length: 0

However, if we sent the request with the ‘Authorization’ header,

curl -v 'https://kaya.gocovid-19.org/service/api/users' -H
'Authorization: Basic RE9OT1RERUxFVEU6RE9OT1RERUxFVEVAMTIz'

we received sensitive data similar to those we received from our access to this API
obtained in the previous section:

{
 "pager": {
 "page": 1,
 "pageCount": 614,
 "total": 30700,
 "pageSize": 50,
 "nextPage": "https://kaya.gocovid-19.org/service/api/
users?page=2"
 },
 "users": [{
 "id": "[redacted]",
 "displayName": "[redacted]"
 }, {
 "id": "[redacted]",
 "displayName": "[redacted]"
 }, {
 "id": "[redacted]",
 "displayName": "[redacted]"
[snipped]

In summary, we show that the hard-coded credential can be used to authenticate against
API endpoints, revealing sensitive data. Although we were not able to access patient data
using these API endpoints, we are concerned that this hard-coded credential can be used
to authenticate against APIs used to search patient data by someone who knows how to
make the appropriate API requests.

Other Issues
The global ‘appKeys’ variable also contains other seemingly sensitive API keys to other
third-party services. We conducted preliminary tests and could not find ways to gain
access to sensitive data using these API keys. One major limitation for our tests is that we

CITIZEN LAB RESEARCH REPORT NO.132 13

do not know the service scope to which these API keys have access, and we cannot test
these keys against all possible APIs. However, a persistent adversary may still find API
endpoints within the scope of these API keys after trying all the possible API endpoints.
Given this risk, we suggest that COVID-KAYA’s developers review the security implications
of these API keys being revealed publicly.

Because the Android app uses Cordova, the Android app and the web app share a large
portion of their Javascript code. In addition to the web app containing hard-coded
credential in its ‘application/keys.js’ file, we also found the same credential in the web
app accessible from the following URL:

https://kaya.gocovid-19.org/covidkaya/application/keys.js

Vulnerability Disclosure
The following table documents our communications related to the disclosure of the
issues we identified in this report.

Date Contact
August 18, 2020 We emailed Dure Technologies, the Philippines Department of

Health, and WHO Philippines regarding the issues we identified with
the web app

August 19, 2020 We received a response from Dure Technologies stating: “Thank you
for your email and feedback, we will look into it on priority.”

September 14, 2020 We emailed Dure Technologies, the Philippines Department of
Health, and WHO Philippines regarding the issues we identified with
the Android app. We also inquired as to the full scope of the vulner-
ability reported on August 18 and asked for confirmation that it was
fixed.

September 15, 2020 We received a response from Dure Technologies stating: “Thank you
for your email and feedback, we will look into it on priority.”

October 22, 2020 We notified Dure Technologies of our October 21 2020 post-disclo-
sure findings, as described below.

October 23, 2020 We received a response from Dure Technologies stating: “Thank
you for your email and feedback. We have duly noted the feedback
shared and will be closing the concerns highlighted asap.”

November 3, 2020 We received a response from Dure Technologies stating: “This is to
confirm that the issue reported has been resolved and the applica-
tion has been released to Playstore. Thank you for your support.”

Post-disclosure analysis
Following our disclosure of these issues, we continued to examine the platform to identify
if any changes had been made as a result of our notification.

UNMASKED14

Web Application
On August 25, 2020 we confirmed that the authentication logic vulnerability we disclosed
on August 18 appeared to have been resolved.

On September 23, 2020 we found that all API keys have been removed from the ‘appKeys’
global variable.

Android Application

September 23, 2020
As of September 23, 2020, the Google Play Store still indicates that COVID-KAYA was
last updated on August 28, which is prior to our disclosure date. This indicates that our
reported issue has not been fixed. Moreover, the app’s API still accepts the hard-coded
credentials.

October 21, 2020
As of October 21, 2020, the Google Play Store indicated that the application was last
updated on September 30. We analyzed the new version (1.4.9) and identified that the
vulnerabilities we reported had only been partially fixed. While the credentials included
in “application/keys.js” had been removed, we found that there remains another occur-
rence of that leaked credential in a different source file “application/apiservices.js”, which
we disclosed to Dure Technologies on October 22.

Using the leaked credentials, we confirmed that we can still log in to the DHIS web inter-
face, indicating that access by these credentials had not been revoked. To test if the user
account from the leaked credentials had been revoked data-access authorization, we
tried searching in the DHIS web interface.

 Figure 9: Screenshot of an attempt to search the DHIS web interface, showing that these
credentials can still access data.

As Figure 9 shows, searching the web interface still returned user information, indicating
that the data access authorization for these credentials had not been revoked. Thus, the
leaked credentials in the source code can still lead to sensitive information being revealed.

CITIZEN LAB RESEARCH REPORT NO.132 15

October 29, 2020
On October 29, 2020, we noticed that Google Play Store showed that the app was updated
on October 27. We tested the new version (1.5.0) and confirmed that all occurrences of
the leaked credentials had been removed. We also tried authenticating against the DHIS
web interface using the leaked credentials. We were denied access, indicating that the
leaked credentials were invalidated.

Discussion
The security and privacy of popular applications has long been a major research focus
of the Citizen Lab. With the onset of the COVID-19 pandemic, this focus has broadened
to include contact tracing and other COVID related health applications, many of which
are being developed rapidly in response to the ongoing health crisis. Even under normal
circumstances, the app ecosystem is often highly insecure as a result of the collection
and storage of personal data. Given the urgency and rapid pace of development around
COVID applications, these privacy and security issues are likely to be magnified.

COVID-KAYA’s vulnerabilities were discovered during our analysis of COVID-19 apps
launched by the governments of Indonesia and the Philippines. Our interest in these
apps stemmed from reported concerns over the collection of personal data through
government-launched apps, as well as previous incidents of COVID-19-related data
breaches in Indonesia and the Philippines. Our analysis of the Philippines’ COVID-KAYA
web and Android apps, which were jointly developed by the Philippines Department of
Health, World Health Organization (WHO), and Dure Technologies, clearly illustrate these
concerns. We discovered a vulnerability in the web app’s authentication logic, which
allows us to access sensitive data normally protected by a superuser login credential.
Similarly, using the credentials that we discovered in the Android app, we found that
signing into the app’s DHIS dashboard using the hardcoded ‘DONOTDELETE’ creden-
tial also revealed the full names of all healthcare providers and the names of all health
centers associated with COVID-KAYA.

The risks posed by these security and privacy issues underscore the importance of
software developers establishing an effective process for reporting and addressing
vulnerabilities. We reported the issues with the web and Android versions on August 18
and September 14, respectively, and in both cases received email confirmation of receipt
from Dure Technologies the next day. We provided a 45 day window from the date of our
disclosure for the developers to fix the issues, prior to our publication of this report. Our
subsequent analysis confirmed that all the issues we identified were resolved within this
45 day timeframe. While this response is commendable, we also highlight that software
developers such as Dure should take additional steps to publicly identify the correct

https://citizenlab.ca/category/research/app-privacy-and-security/
https://www.thejakartapost.com/academia/2020/04/17/robust-personal-data-protection-critical-in-covid-19-fight.html
https://www.rappler.com/newsbreak/in-depth/unauthorized-disclosure-covid-19-patients-identities-continues-npc

UNMASKED16

process for notifying them of security issues. Security researchers are often unclear where
and how to report such issues, and as in our case with COVID-KAYA, are forced to rely on
sending cold emails to general email accounts.

Given the potential impact of vulnerabilities such as these, as well as the likelihood that
apps for contract tracing and data sharing will continue to be used, continued research in
this area is vital. We are continuing our investigation into COVID-19 apps, and in a forth-
coming report will examine the Android version of Indonesia’s PeduliLindungi, and the
Philippines’ StaySafe PH and COVID-KAYA apps, with a particular focus on the dangerous
permissions required (e.g., access to camera, location, phone status, and other sensitive
user information).3 While digital technologies, including mobile applications, may be
beneficial to public health responses, it is imperative that these applications be carefully
vetted to ensure that users’ safety, privacy, and security are not put at unnecessary risk.

3	 Dangerous permissions refer to permissions that could potentially affect the user’s privacy or the
device’s normal operation.

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview

