~ “Please do not

make it public”

Vulnerabilities in Sogou Keyhoard
encryption expose keypresses to
network eavesdropping

By Jeffrey Knockel, Zo€ Reichert, and Mona Wang

munk §&Cho°I EE_E]E UNIVERSITY OF iii

OF GLOBAL AFFAIRS & PUBLIC POLICY vi;!zfa TO RONTO THEC'T'ZENLAB

Copyright

© 2023 Citizen Lab, “‘Please do not make it public’: Vulnerabilities in Sogou
Keyboard encryption expose keypresses to network eavesdropping.”

Licensed under the Creative Commons BY-SA 4.0 (Attribution-ShareAlike
Licence)

oNole

Electronic version first published by the Citizen Lab in 2023. This
work can be accessed through https://citizenlab.ca/2023/08/
vulnerabilities-in-sogou-keyboard-encryption/.

Document Version: 1.0

The Creative Commons Attribution-ShareAlike 4.0 license under which this
report is licensed lets you freely copy, distribute, remix, transform, and build
on it, as long as you:

« give appropriate credit
+ indicate whether you made changes
+ use and link to the same CC BY-SA 4.0 licence

However, any rights in excerpts reproduced in this report remain with their
respective authors; and any rights in brand and product names and associ-
ated logos remain with their respective owners. Uses of these that are
protected by copyright or trademark rights require the rightsholder’s prior
written agreement.

About the Citizen Lab, Munk School of Global Affairs & Public
Policy, University of Toronto

The Citizen Lab is an interdisciplinary laboratory based at the Munk School of Global
Affairs & Public Policy, University of Toronto, focusing on research, development, and
high-level strategic policy and legal engagement at the intersection of information and
communication technologies, human rights, and global security.

We use a “mixed methods” approach to research that combines methods from political
science, law, computer science, and area studies. Our research includes investigating
digital espionage against civil society, documenting Internet filtering and other technol-
ogies and practices that impact freedom of expression online, analyzing privacy, security,
and information controls of popular applications, and examining transparency and
accountability mechanisms relevant to the relationship between corporations and state
agencies regarding personal data and other surveillance activities.

Acknowledgements

We would like to thank Jakub Dalek, Pellaeon Lin, Adam Senft, and Mari Zhou for valuable
editing and peer review. Research for this project was supervised by Ron Deibert.

Suggested Citation

Jeffrey Knockel, Zoé Reichert, and Mona Wang. “‘Please do not make it public’:
Vulnerabilities in Sogou Keyboard encryption expose keypresses to network eaves-
dropping.” Citizen Lab Report No. 170, University of Toronto, August 2023. https://
citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/.

Contents

Key findings

Introduction
Methodology
Findings

Sogou’s EncryptWall
Attack

Windows version 13.4
Android version 11.20

iOS version 11.21
Mitigation
Coordinated disclosure
Limitations

Discussion

~N uoa b

10

11

11

15

16

We urge Sogou Input Method users to immediately update to the most recent
version of the app (at least Windows version 13.7, Android version 11.26, oriOS
version 11.25).

Key findings

> We analyzed Tencent’s Sogou Input Method, which, with over 450 million
monthly active users, is the most popular Chinese input method in China.

> Analyzing the Windows, Android, and iOS versions of the software, we
discovered troubling vulnerabilities in Sogou Input Method’s custom-designed
“EncryptWall” encryption system and in how it encrypts sensitive data.

> We found that network transmissions containing sensitive data such as those
containing users’ keystrokes are decipherable by a network eavesdropper,
revealing what users are typing as they type.

> Wedisclosed these vulnerabilities to Sogou developers, who released fixed
versions of the affected software as of July 20, 2023 (Windows version 13.7,
Android version 11.26, and iOS version 11.25).

> These findings underscore the importance for software developers in China
to use well-supported encryption implementations such as TLS instead of
attempting to custom design their own.

Introduction

Compared to typing alphabetic languages whose small number of letters can be repre-
sented uniquely by keys, typing logographic languages such as Chinese is more difficult.
Chinese has tens of thousands of characters used in varying frequencies, far too many to
fit on a single keyboard. There is no standard method of typing Chinese characters, but
with the advent of modern technology a number of complementary approaches have
emerged. The most popular is the pinyin method, based on the pinyin romanization of

Chinese characters. Zhuyin is another popular phonetic input method, and shape or
stroke-based input methods like Cangjie or Wubi are also commonly used. Modern input
methods also support inputting characters via handwriting, voice recognition, and photo-
graph or OCR (see Figure 1 for illustrations).

https://link.springer.com/chapter/10.1007/978-3-030-22660-2_3
https://en.wikipedia.org/wiki/Pinyin_input_method
https://en.wikipedia.org/wiki/Pinyin
https://en.wikipedia.org/wiki/Bopomofo
https://en.wikipedia.org/wiki/Stroke_(CJK_character)
https://en.wikipedia.org/wiki/Cangjie_input_method
https://en.wikipedia.org/wiki/Wubi_method
https://en.wikipedia.org/wiki/Optical_character_recognition

“"PLEASE DO NOT MAKE IT PUBLIC"

13 A4 | 7513 A4 | 713 A4 |
& Jeff A & Jeff A & Jeff A

0

san @

® sodmocsae O o i - Y

ni'hao @ ni'hao @ &
reF MRS RR OIE #/E > froF fRBL RS {RF 1RR > —_—
QWERTYU I OFP mi 1 ABC DEF & p—

ni

AlSID|FIG|HIJIK]L GHI JKL MNO =i /—~ n

o {

A Z X C VB N M & m PQRS TUV WXYZ 0 !

s . o . % 123 2, el [eR| & |28 O B e

v ° | v ° = v ° " =

Figure 1: Example of three of the different Chinese input methods supported by the Android
version of Sogou Input Method. The first two are pinyin-based inputs, whereas the third is based
on handwriting or drawing characters. Sogou also supports wubi-based input, photograph input,
and a “rare characters” keyboard which is based on inputting the pinyin for characters’ individual
components or radicals.

While alphabetic keyboards typically provide autocomplete features for more expedient
typing, predictive features in Chinese input methods are more crucial when using input
methods such as pinyin where hundreds of characters might match an inputted pinyin
syllable. For longer strings of syllables, an IME will commonly reach out over the network
to a cloud-based service for suggestions if suitable suggestions are not available in the
input method’s local database.

In this report, we analyze Tencent’s Sogou Input Method, the most popular Chinese input
method with over 455 million monthly active users and versions of the app for multiple
platforms, including Windows, Android, and iOS. Sogou Input Method accounts for 70%
of Chinese input method users, with products by iFlytek and Baidu taking second and
third place, respectively. McAfee’s 2015 analysis previously observed that the Windows
version of the app transmitted device identifiers in the clear without any encryption, but
it did not analyze the safety of data transmitted by the app’s encryption system.

We analyzed Sogou Input Method on three operating system platforms, finding that the
app hastroubling vulnerabilities in its custom-designed encryption system which render
sensitive data such as the keystrokes that users type decipherable to network eavesdrop-
pers. The vulnerabilities which we discover are not limited to Chinese writers in China, as
market research estimates concerning visitation to the app’s website put United States

users as comprising over 3.3% of visits, Taiwan as nearly 1.8%, and Japan as over 1.5%.

The remainder of this report is structured as follows. In the “Methodology” section, we
outline the reverse engineering tools and techniques we used to analyze Sogou Input

https://en.wikipedia.org/wiki/Pinyin_input_method
https://en.wikipedia.org/wiki/Wubi_method
https://en.wikipedia.org/wiki/Radical_(Chinese_characters)
https://www.chinainternetwatch.com/26785/input-method-2018/
https://www.chinainternetwatch.com/26785/input-method-2018/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/apps-sending-plain-http-put-personal-data-risk/
https://archive.ph/8lYV4

Method. In “Findings”, we describe how Sogou’s custom-designed encryption system
works, the vulnerabilities which we discovered in it, as well as examples of impacted data
transmissions. In “Mitigation” and “Coordinated disclosure”, we discuss how Sogou can
fix the vulnerabilities that we reported to them and how we reported the vulnerabilities
to them. Finally, in “Discussion” we reflect on how these vulnerabilities speak to systemic
issues in the larger Chinese app ecosystem.

Methodology

We analyzed the Windows, Android, and iOS versions of Sogou Input Method. To procure
the versions we analyzed, in May 2023, we downloaded the latest versions of the Windows
and Android versions from the product website (the Android version of Sogou Input

Method, while available as recently as June 3, 2021, is presently not available in the
Google Play Store). We procured the iOS version from Apple’s App Store (see Table 1 for
a breakdown of versions analyzed).

Platform Sogou Input Method Device
Version
Windows 7 SP1 13.4 Virtual machine
Android 9 11.20 Google Pixel 2
i0S 14.8 11.21 iPhone SE 2nd generation

Table 1: Breakdown of versions of Sogou Input Method analyzed and the environments in which
they were analyzed.

We analyzed these versions of Sogou Input Method using both static and dynamic analysis
methods. We used jadx to statically analyze and decompile Dalvik bytecode and IDA Pro
to statically analyze and decompile native machine code. We used frida to dynamically
analyze the Android and iOS versions and IDA Pro to dynamically analyze the Windows
version. Finally, we used Wireshark and mitmproxy to perform network traffic capture

and analysis.

We found that each version of Sogou Input Method encrypts sensitive data using an
encryption system that is internally referred to as the “EncryptWall” encryption system.

We found that the Windows and Android versions of Sogou Input Method contain vulnera-
bilities in this encryption system, including a vulnerability to a CBC padding oracle attack,

which allow network eavesdroppers to recover the plaintext of encrypted network trans-
missions, revealing sensitive information including what users have typed (see Table 2
for a breakdown of versions affected). In the case of the Android version, we are also able

https://shurufa.sogou.com/
https://web.archive.org/web/20210603103923/https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
https://github.com/skylot/jadx
https://hex-rays.com/ida-pro/
https://frida.re/
https://hex-rays.com/ida-pro/
https://www.wireshark.org/
https://mitmproxy.org/
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

to recover the second halves of the symmetric encryption keys used to encrypt traffic.
We also found vulnerabilities affecting the encryption implemented in the iOS version,
but we are not presently aware of methods to exploit these vulnerabilities in the version
which we analyzed.

Platform Exploitable?
Windows Yes

Android Yes

i0S No known exploit

Table 2: Summary of versions of Sogou Input Method affected.

In the remainder of this section we detail our attacks on Sogou’s EncryptWall encryption
system. We begin by giving background on the encryption system, then detailing our
attack on it, and finally we break down how, or whether, the attack applies to the three
platforms which we analyzed, adapting our attack for deviations in the implementation
of the EncryptWall system across platforms.

Sogou’s EncryptWall

The attacks which we discuss in this report concern vulnerabilities that we found in
Sogou’s “EncryptWall” encryption system, which appears intended for securely tunneling
sensitive traffic to unencrypted Sogou HTTP API endpoints via encrypted fields in plain
HTTP POST requests. In this report we call the outer, plain HTTP request the EncryptWall
request and the single tunneled HTTP request each EncryptWall request encapsulates
the tunneled request. Although there were differences in the implementation across the
three platforms that we analyzed, we found that the system generally works as follows:

* AnEncryptWall request is sent as an HTTP POST request to a Sogou EncryptWall API
endpoint containing at least five HTTP form fields specifying cryptographic parame-
ters used to encrypt the tunneled request as well as the encrypted tunneled data. Two
form fields relate to specifying the key and initialization vector (IV) used to encrypt
other fields in the EncryptWall request:

a. “K” - the base64 encoding of the encryption of a 256-bit AES key k with a
hard-coded 1024-bit public RSA key using PKCS#v1.5 padding; k is generated

randomly for each request

b. “V” - the base64 encoding of a 128-bit initialization vector v; v is generated
randomly for each request

* Three of the form fields are individually zlib compressed, encrypted using k and v,

and base64-encoded according to the following pseudo-code:

ENCRYPT(data) = base64_encode (AES_cbc_encrypt(zlib_compress(data, wbits=-15),
ky v))

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/PKCS_1
https://en.wikipedia.org/wiki/Zlib

The three form fields we consistently observed encrypted in this manner are as follows:
e “U” - ENCRYPT(the URL of the tunneled HTTP request)

* “G” - ENCRYPT(any GET parameters for the tunneled HTTP request in the form of a
query string)

e “P” - ENCRYPT(the raw POST data for the tunneled HTTP request, if any)

Dependingon the platform analyzed and the type of request being made, the EncryptWall
request may be sent over encrypted HTTPS or plain HTTP. In cases where EncryptWall
requests were made over HTTPS, we believe that the requests are secure against network
eavesdropping, despite any defects which might exist in the underlying cryptography
of the EncryptWall request on account of the HTTPS’s TLS cryptography additionally
protecting it. Thus, our findings in the remainder of this section only concern EncryptWall
requests which we observed being made over plain HTTP which do not benefit from the
additional protection of HTTPS.

Attack

We found that the EncryptWall system is vulnerable to a CBC padding oracle attack, a

type of chosen ciphertext attack originally published in 2002 impacting block ciphers

using cipher block chaining (CBC) block cipher mode and PKCS#7 padding. In such an

attack, the plaintext of a message can be recovered one byte at a time, using at most
256 messages per byte. While we do not intend to fully reiterate how this attack works
here, the attack relies on the existence of a certain kind of side channel called a padding
oracle that reveals unambiguously whether the received ciphertext, when decrypted, is
correctly padded. We identified such an oracle in the EncryptWall system: we found that
a ciphertext sent in the “U” form field returns an HTTP 400 status code when it contains
incorrect padding, whereas, when correctly padded, it returns either a 200 status or 500
status code depending on whether the decrypted URL is a valid URL or not, respectively.
By performing a CBC padding oracle attack, this padding oracle allows us to not only
reveal the entire plaintext of “U” but also “G” and “P”, since they use the same key and
initialization vectors. Thus, by using this padding oracle we can decrypt the contents of
the entire EncryptWall request.

Inthe remainder of this section, we adapt this attack for all deviations in the implementa-
tion of the EncryptWall system on the Windows and Android platforms. Although they do
not presently appear exploitable, we also detail defects in the EncryptWall system on iOS.

Windows version 13.4

The EncryptWall system implemented in the Windows version that we analyzed deviated
from the basicimplementation described above in one detail, namely that the IV v, instead

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://en.wikipedia.org/wiki/Chosen-ciphertext_attack
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_block_chaining_(CBC)
https://en.wikipedia.org/wiki/PKCS_7
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_(cryptography)

of being public, was encrypted in the same manner as the AES key k. Due to this discrep-
ancy, vis notimmediately known, which is potentially problematic for our attack for two
reasons: first, in the CBC padding oracle attack, the IV must be known in order to decrypt
the first block of plaintext. Second, since the data tunneled in the EncryptWall requests is
compressed before being encrypted, the first block of plaintext is important for decom-
pressing the remaining blocks.

However, we developed a method to recover v that exploits the fact that v is reused to
encrypt multiple plaintexts. Specifically, since the URL “U” is easily predictable and is ever
only one of a small number of possible endpoints, we are able to recover v by performing
a CBC padding oracle attack on the first ciphertext block of “U”, assuming an all zero IV.
The result of this attack will be the first plaintext block of the URL XORed with v. We then
XOR this result with our prediction for the first plaintext block of the URL, yielding v alone.
With v recovered, we can perform the CBC padding oracle attack on “G” and “P” as usual.

jury
N |
=
[ary

00 =l L0 W M

"1111_sogou_pinyin_guanwang_13.4e_1111"
"13.4.8.7561"

3

1

"13.4.68.7561"

O~ N bW R

[y
B oW

7: "nihaochaohaohaohaochaohaozdaasdfffaahellocanyoureadthis”|
16: 11
17 {
3 {
g 2
1

2:

SIS S Y
H@WE=~on kW
(S
[Y= IS
oD s
-
[

19 {
4: "0"

[I 8]
W P

}

Figure 2: Example excerpt of recovered protobuf data; line 11 contains the typed text.

As one example of the kind of transmitted data vulnerable to this attack, we found
that for EncryptWall requests sent to “http://get.sogou.com/q”, when “U” was “http://
master-proxy.shouji.sogou.com/swc.php”, “G” contained version information pertaining
to Sogou’s software, and “P” was a protobuf buffer containing the keystrokes that had
been recently typed in (see Figure 2 for an example). We believe that these transmissions
are related to a cloud-based implementation of an autocompletion service. Since these
transmissions are vulnerable to our attack, the keystrokes of Sogou Input Method users
can be decrypted by a network eavesdropper, informing the eavesdropper of what
users are typing as they type.

https://en.wikipedia.org/wiki/Protocol_Buffers

Android version 11.20

The Android version which we analyzed adopts the basic implementation of EncryptWall
but with the inclusion of four additional form fields: “R”, “S”, “E”, and “F”. The field “R”
transmits another 32-byte key r. Notably, however, each byte of r is randomly chosen
from the 36-character set of ASCIl uppercase letters and numbers. Therefore, instead of
2563 = 2%¢ hits of entropy, the key only has 36%* < 21% bits of entropy. Furthermore, unlike
k, ris not generated randomly for each request and is only generated once per applica-
tion lifetime as it is cached in C static memory. The field “R” is then transmitted as the
base64 encoding of k @ r. Note that due to this transmission, k’s entropy is also reduced
to 3632 < 21 bits of entropy. The parameters k, r, and v are used to encode “S”, “E”, and
“F” according to the following pseudo-code:

ENCRYPTSEF (data) = base64Encode(k & AES_cbc_encrypt(data, r,

“EscowDorisCarlos”))

Note that unlike the typical ENCRYPT() function, ENCRYPTSEF() features a hard-coded IV
“EscowDorisCarlos” and no zlib compression. Additionally, although ENCRYPTSEF() uses
rinstead of kas an AES key, k is additionally XORed with the result of the AES encryption.
Each of the fields “S”, “E”, and “F” are individually encrypted and encoded according to
the ENCRYPTSEF() function.

Despite the use of this modified cryptography, we were still able to successfully attack the
encryption of these fields. We were able to apply the CBC padding oracle attack, using
Sogou’s processing of the “E” form field instead of the “U” form field that we typically
would use, with the exception of the following two accommodations:

First, since the key k is 32 bytes but AES blocks are 16 bytes, when the output of the AES
block cipher is XORed with k, we can think of the output being XORed with two keys
k, and k,, where k, is XORed with odd-numbered blocks (1, 3, ...) and k, is XORed with
even-numbered blocks (2,4, ...) (see Figure 3 for aniillustration). Thus, when performing
the CBC padding oracle attack, we had to ensure that the block that we were attacking
was in an even-numbered position if it was originally even-numbered or in an odd-num-
bered position if it was originally odd-numbered. In other words, we had to preserve the
parity of the block’s position.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Static_variable

Ciphertext ¢; Ciphertext c, Ciphertext c;
[ITTTITTITITTT1] IITTITTTITT1 TTTTITTIITTT1]

Key k; —»? Key k, —»? Key k; ——&
Kev r block cipher Kev r block cipher Kev r block cipher
y decryption y decryption y decryption
Initialization Vector (IV)
OTITIITITIT 1] —— &)
OTITTTTITITT] LOTTTTITITTITT OTITTTTITITT
Plaintext p; Plaintext p, Plaintext ps

Figure 3: A modified version of CBC in which a 32-byte key k =k || k, composed of two 16-byte keys
k, and k, is XORed with ciphertext blocks before being decrypted by the block cipher such that k,
is XORed with odd-numbered blocks (1, 3, ...) and k, is XORed with even-numbered blocks (2, 4,
...)

Second, since the IV is hard-coded, we cannot modify it and thus, similar to the Windows
version, the CBC padding oracle attack cannot recover the first block of plaintext p,
without an adaptation. Namely, we found that p, was still recoverable for form fields

“S”, “E”, and “F” via the following procedure:

1. We treat the fixed IV, “EscowDorisCarlos”, as a ciphertext block ¢, preceding the first
ciphertext block ¢, and send it to the oracle. Since ¢, must be in an odd-numbered
position, we ensure that ¢, is in an even-numbered position. Thus, during the attack,
the oracle first XORs ¢, with k, when decrypting the first ciphertext block c,.

2. Resultantly, decryption of ¢, produces p,’, which is equal to p, ® “EscowDorisCarlos”
®c, Ok,

3. Since (perstep 1) c0=“EscowDorisCarlos”, p,"is merely p, ©® k.. Therefore, by applying
steps 1-3, we recover p, @ k, for each of fields “S”, “E”, and “F”.

4. Moreover, we also found that the contents of the first plaintext block of the form field
“S” were highly predictable. Namely, they contained the version of Sogou being used,
which was already transmitted in the clear as an HTTP header of the EncryptWall
request and thus would be available to any network eavesdropper. Thus, in the case
of form field “S”, we know p,. In step 3, we recovered p, © k, for form field “S”. Since
we know p, and p, ©® k,, we have therefore recovered k.,

5. Once we know k., which is the same value for fields “S”, “E”, and “F”, since (per step 3)
we know p, ©® k, for fields “E” and “F”, we can recover p, for “E” and “F” as well.

Additionally, we can now also recover the second half of r, r,, which is beneficial to an
attacker in that our knowledge of r, can be used to more easily recover k, in subsequent

requests. Recall that the form field “R” encodes k ©® r. Thus, after recovering k, we can
recover r, by XORing the second half of the “R” field’s encoded contents with k,. Oncer, is
recovered, since r, unlike k, is generated once per application lifetime, we can more easily
recover k, in future requests by simply XORing the second half of “R” with r,, making the
attack even easier to perform in the future. Furthermore, this reduces the entropy of r,
and thus, also k, to 36! < 283 bits.

| |

2 1: "com.android.messaging"
3 2@ "11.26"

4 4: 1

5 6: "android_sweb"

6 8: "Google"

7 10: "android_sweb"

8 11 “11c2a"

9 14: "380"

10 18: "-1"

11 22: "5682b3aad4fa7bd40d776c93a35a77c6d"
12 }

332 {

14 1: Oxbffoonoo0AE00060
15 2: OxbffoOEEEO0B00008
dig 3 =1

17}

P83 1

19 4: "canyoureadthis"
2011 {

21 1: "onekeyimageenable"
22 2@ "1M

23 }

Figure 4: Example excerpt of recovered protobuf data; line 19 contains the typed text and line 2
contains the package name of the app in which the text is being typed.

As one example of the kind of transmitted data vulnerable to this attack, we observed
that for EncryptWall requests sent to “http://v2.get.sogou.com/q”, when “U” was “http://
swc.pinyin.sogou.com/swc.php”, “P” was a protobuf buffer containing all of the text
currently present in the input field in which the user is currently typing as well as the
package name of the app in which the text was being typed (see Figure 4 for an illustra-
tion). These transmissions occurred when pressing the magnifying glass icon, and we
believe that these transmissions are related to an image search feature in which typed
text is searched against a database of animations and memes which can be inserted into
the typed message. Since these transmissions are vulnerable to our attack, the keystrokes
of Sogou Input Method users are an example of what a network eavesdropper could
decrypt, informing the eavesdropper of what these users are typing as they are typing.

As one other example of the kind of transmitted data vulnerable to this attack, we
observed that for EncryptWall requests sent to “http://v2.get.sogou.com/q”, when “U”
was “http://update.ping.android.shouji.sogou.com/update.gif”, “P” was a query string
containing a list of every app installed on the Android device. We are unaware of what
feature this data transmission is intended to implement. While one can imagine knowing

https://en.wikipedia.org/wiki/Protocol_Buffers

which app a user is presently using may be useful for providing better typing sugges-
tionsin thatapp, itis difficult to imagine how knowing every app that a user hasinstalled
can provide better typing suggestions, even apps which users do not intend to use with
Sogou Input Method.

i0S version 11.21

The iOS version which we analyzed had no major deviations from the basic EncryptWall
implementation. However, unlike on some platforms where we saw some EncryptWall
requests sent over encrypted HTTPS and others over plain HTTP, all EncryptWall requests
that we observed transmitted by the iOS version which we analyzed were transmitted
over HTTPS and thus we believe them to be secure against network eavesdropping.
However, we note that without the additional protection of HTTPS, the iOS version would
have been the most vulnerable due to the existence of an additional defect in the imple-
mentation of EncryptWall. Namely, we found that the iOS version randomly chooses the
key k and IV v according to the following code in Figure 5:
vold _ cdecl +[DataEncryptor randomizefesKeyIv:keylen:iv:ivien:](
id al,
;ELaa2,
unsigned _ intd *key,
ssize_t key len,
unsigned _ intd *iv,
ssize_t iv_len)
unsigned _ intd *iv_; // x2@
unsigned _ int8 *key_; // w22
unsigned int key seed; // w@

unsigned int iv_seed; // wo

if (key }

e =H
key see time(@LL);

seed);

len =1)
*ii:_+f = rand();
} y_4it 3
while { key len);

*iv ++ = rand();

1v_1leny

}
while { iv_len });
}
}
}
h

Figure 5: Decompiled code for generating AES key and IV. Note that the random number gener-
ator is seeded with the current time, rounded down to a whole second, before generating the key
and again before generating the IV.

Note that before randomly generating the key and again before randomly generating
the IV the random number generator is seeded with the current time as seconds since
the Unix epoch, rounded down to a whole second. There are two consequences to this
behavior: first, the only information needed to derive the AES key k is the time which
the request was sent, which any network eavesdropper would be able to easily record.
Second, since the random number generator is re-seeded before generating the IV v with
what will almost always be the same time in seconds after rounding, v is almost always
the first 128 bits of k. Since v is public, all EncryptWall messages reveal the first half of k
in v, despite the fact that k is encrypted with a public RSA key.

However, we note again that this defect is not currently exploitable since EncryptWall
requests on iOS appear to always be additionally wrapped in HTTPS. However, due to
the severity of the defect, we are nevertheless compelled to mention it on account of the
fact that previous versions of the iOS version may be impacted and because this code
may be reused in other apps which may be vulnerable.

Mitigation

In order to address the reported issues, Sogou Input Method should secure all trans-
missions using a popular, up-to-date implementation of HTTPS or, more generally, TLS
instead of relying on custom-designed cryptography to secure the transmission of sensi-
tive user data. Moreover, Sogou Input Method should not transmit data unnecessary for
the functionality of the program.

Coordinated disclosure

On May 31,2023, we disclosed our findings to Tencent in a letter attached here, following

our security disclosure vulnerability policy. Below in Table 3 is our disclosure timeline:

Date Contact

May 312023 Vulnerability disclosed to IMETS@tencent.com.

June 16 2023 Vulnerability disclosed again via Tencent Security Response Centre
(TSRC) web portal.

June 252023 We received the following response via the TSRC portal:

“Thank you for your interest in Tencent security. There is no low or
low security risk for this issue. We look forward to your next more
exciting report.”

https://en.wikipedia.org/wiki/Unix_time
https://citizenlab.ca/wp-content/uploads/2023/08/attachment1.pdf
https://citizenlab.ca/disclosure-of-security-vulnerabilities/
https://en.security.tencent.com/index.php

Date

Contact

June 252023

June 26 2023

June 28 2023

June 28 2023

June 292023

June 292023

July 4 2023

July 4 2023

Eighteen hours later, we received the following response via the
TSRC portal:

“Sorry, my previous reply was wrong, we are dealing with this vulner-
ability, please do not make it public, thank you very much for your
report.”

Tencent’s initial rejection of our disclosure and subsequent about-
face served as inspiration for the title of this report.

We sent the following message via the TSRC portal:

“Thank you for the update. We will publicly disclose the vulnerability
after July 31, 2023.”

We received the following response via the TSRC portal:

“Thank you very much for your report, repair plan and repair time,
which have been replied to disclosure@citizenlab.ca by email.”

We sent the following message via the TSRC portal:

“We have not received such an email at that address. However, it

has come to our attention that our domain (citizenlab.ca) may not
be accessible from China, and therefore emails from China may

not be deliverable to it. Could you send a copy of the email you

sent to disclosure@citizenlab.ca to another email address of mine,
[redacted]@utoronto.ca ? | believe that there should be no issue
delivering emails from China to this utoronto.ca address. Thank you.”

We received the following response via the TSRC portal:

“The email we sent is security@tencent.com, the subject line is: Reply
Sogou Pinyin Method vulnerabilities,which may have been classified
as junk mail?”

We sent the following message via the TSRC portal:

“Unfortunately we have not received such an email at that address, not
even in our spam folder. Would you be able to try sending a copy of the
email to another email address of mine, [redacted]@utoronto.ca ? Thank

»

you.
We received the following response via the TSRC portal:

“Can you use disclosure@citizenlab.ca to send an unsolicited email
to security@tencent.com? Then I'll send the fix details to [redacted]@
utoronto.ca.”

We sent the following message via the TSRC portal:

“Yes, we have now sent such an email and are awaiting your
response.”

Date

Contact

July 42023

July 18 2023

July 20 2023

July 212023

July 22 2023

July 24 2023

July 27 2023

We received the response attached here at the [redacted]@
utoronto.ca email address. In the email response, Sogou Input
Method developers outline a partial mitigation which they had
already deployed by the date of the email as well as a timeline to
migrate all platforms to use TLS encryption by July 31, 2023.

We found that Sogou Input Method developers had released
versions of the app for each platform which they had identified in
previous correspondence as being the versions to fix the issues we
identified. Finding that the Windows and iOS versions addressed
the issues we reported but not the Android version, we sent the
following message via the TSRC portal:

“Hello again. In the email you sent us you indicated that version 11.25
of the Android app would be upgraded to send EncryptWall requests
using HTTPS. We analyzed version 11.25 (Sogoulnput_11.25_
android_sweb.apk) and found that it still does not use HTTPS to
transmit all EncryptWall requests, including the ones that we identi-
fied in our disclosure. Is version 11.25 still the version of the Android
app that should contain these fixes, or will it be in a future release?”

We found that Sogou Input Method developers had released version
11.26 of the Android app. We found that this version addressed all
of the issues that we reported.

The TSRC portal prompted the following message:

“The vulnerability has been repaired, please review and check if it
still exists. If it has been repaired, please click ‘Repaired’; if it has not
been repaired, please click ‘Unrepaired.”

We clicked “Repaired”.

We received the following response via the TSRC portal:

“Thank you for your feedback. We’ll look into it internally.”

We received the following response via the TSRC portal:

“Thank you very much for your feedback, our latest repaired version
is 11.26 (Sogoulnput_11.26_android_sweb.apk, you can download
it from our official website: https://shurufa.sogou.com/). If you have
any other questions, please let us know.thanks.”

We received the attached email at the [redacted]@utoronto.

ca email address. In the email, Sogou Input Method developers
provide us with the versions containing the fixes and inquire
about “the exact time, website and specific content” of our public
disclosure.

https://citizenlab.ca/wp-content/uploads/2023/08/attachment2.pdf
https://citizenlab.ca/wp-content/uploads/2023/08/attachment3.pdf

Date Contact
July 27 2023 We sent from [redacted]@utoronto.ca the following response:

“We can confirm that you have fixed the vulnerabilities that we
reported. We will not publicly disclose the vulnerabilities until after
July 31, 2023. We will publish details regarding the security vulner-
abilities in a report that will be available on our website: https://
citizenlab.ca/.”

July 29 2023 We received the attached email at the [redacted]@utoronto.ca
email address. In the email, Sogou Input Method state their commit-
ment to privacy and security, explain their original motivation for
the EncryptWall system, and remind us of their speedy resolution of
the reported vulnerabilities.

Table 3: Vulnerability disclosure timeline.

On July 4, 2023, we evaluated the partial mitigation which the Sogou Input Method devel-
opers stated they applied on June 30, 2023, in which, in the case of error, Sogou servers
always return the same HTTP status code — 400 — instead of 400 or 500 depending on
whether there is a padding error or some higher level application layer, respectively.
While this mitigated our attack on the Windows version of Sogou Input Method as well as
our attack on the “U”, “G”, and “P” fields on the Android version, our attack on Android’s
“S”, “E”, and “F” fields still worked since it relied on distinguishing between HTTP status
codes 400 and 200, 200 being a success code and not an error code, and the mitigation
only modified the servers to unconditionally return status code 400 in the case of an error.

Platform Fixed Version
Windows 13.7

Android 11.26

i0S 11.25

Table 4: Fixed versions of Sogou Input Method.

In the Sogou Input Method developers’ July 4 correspondence, they stated that version
13.7 of the Windows version of the app and version 11.25 of the Android and iOS versions
of the app would address the issues that we reported. On July 18, 2023, we found that
these versions of the app had been released. Note that these updates were released ahead
of the July 31 deadline which we imposed. Analyzing the updated Windows version, we
found that all EncryptWall traffic was encrypted using the TLS implementation provided
by the operating system’s WinHTTP service, satisfyingly fixing the vulnerabilities we
reported in the Windows version. Recall that we were unaware of any way to exploit the
issue which we discovered in the iOS version of the app. Nevertheless, we found via static
analysis that the updated version of the iOS version addressed the issue that we reported.
Despite version 11.25 being originally identified by the Tencent developers as resolving
the vulnerabilities we reported, we found that on July 20, 2023, the Sogou Input Method
developers released version 11.26 of the Android app and that this version used TLS to

https://citizenlab.ca/wp-content/uploads/2023/08/attachment4.pdf
https://learn.microsoft.com/en-us/windows/win32/winhttp/winhttp-start-page

encrypt all EncryptWall traffic, satisfyingly fixing the vulnerabilities we reported in the
Android version. Thus, by July 20, 2023, all issues that we reported were fixed (see Table
4 for a summary of fixed versions).

Our difficulties receiving Tencent’s email response to our disclosure highlight unexpected
challenges in disclosing vulnerabilities to companies in certain jurisdictions. After
disclosing the vulnerabilities to Tencent, we measured that our email domain (citizenlab.
ca)isblockedin China. Specifically, we found that China’s national firewallinjected anoma-
lous DNS replies in response to queries for this domain, including MX record lookups. The
injected DNS replies contain an A record with a seemingly arbitrary IP address, even
when the lookup was for an MX record, not an A record. When a client making an A record
lookup receives one of these injected responses, it will erroneously use the bogus IP
address in the injected response. However, for MX records, these injected responses are
likely to be interpreted as errors by DNS clients due to receiving an A record in response
to an MX lookup, and a DNS client’s MX lookup for an injected domain is likely to simply
fail rather than erroneously using a bogus record as in the case of A lookups. While this
injection behavior may have been intended to block Chinese users from accessing our
website, it also hampers the ability for users in China to email us, even if such an email
has been solicited.

We cannot be certain that China’s blocking of our domain is why Tencent’s email was
not delivered to an email server on our domain, but we received some late evidence that
further strengthened this hypothesis. The July 27 email that we received at [redacted]@
utoronto.ca was also addressed to disclosure@citizenlab.ca. The disclosure@citizenlab.
ca address ultimately received the email on July 28, just over 24 hours later. By inspecting
the email’s headers, we found that the delivery of the email stalled between one of
Tencent’s mail servers and Google’s MX servers. As Google is our mail provider in the
citizenlab.ca MX records, this finding strengthens the hypothesis that Tencent’s mail
servers were struggling to look up our domain’s MX records. The email may have eventu-
ally been delivered over 24 hours later due to an intermittent failure in China’s firewall or
due to packet loss dropping the firewall’s injected DNS responses, allowing the MX lookup
on our domain to finally succeed. Therefore, we have chosen to communicate all future
disclosures from a different domain that, to our best knowledge, is not blocked in any
country, to ensure that we do not fail to receive crucial communication during a coordi-
nated disclosure. Simultaneously, we ask firewall operators to consider how blocking
domains may have unintended consequences such as contributing to continued vulner-
abilities in the software developed by those behind their firewalls who may be hampered
in participating in important dialog during coordinated disclosures.

https://citizenlab.ca/
https://citizenlab.ca/
https://en.wikipedia.org/wiki/MX_record

Limitations

In this report we detail vulnerabilities in Sogou’s EncryptWall encryption system as used
in Sogou Input Method. However, in this work we did not perform a full audit of Sogou
Input Method or make any attempt to exhaustively find every security vulnerability in
the software. Our report concerns a single set of related vulnerabilities that we discov-
ered, and the absence of our reporting of other vulnerabilities should not be considered
evidence of their absence.

Discussion

Over the last eight years we have dedicated immense effort analyzing, documenting, and

responsibly disclosing vulnerabilities concerning the insecure transmission of sensitive

data in Chinese-developed apps. While we have had some success in coordinating with
developers to resolve these issues, the ecosystem remains problematic, as here we are,
again, reporting on how an unimaginably popular Chinese-developed app fails to adopt
even simple best practices to secure the sensitive data which it transmits. In the present
case, Sogou Input Method, an app with over 450 million users, failed to properly secure
the transmission of sensitive data, including the very keypresses which its users were
typing, allowing such data to be recovered by any network eavesdropper. This vulner-
ability could have been easily avoided by, instead of using “homebrew” cryptography,
adopting TLS, a common and mature cryptographic protocol with ubiquitous availability
and up-to-date support. While no cryptographic protocol is perfect, TLS implementations
had already ameliorated vulnerability to CBC padding oracle attacks in 2003, two decades
prior to the time of this writing. We have come to believe that coordinated security disclo-
sures are sorely inadequate to protect the data of users transmitted by Chinese apps.
We believe that holistic change in the software development ecosystem is required to
resolve these systemic issues.

Even with the reported vulnerabilities now resolved, the Sogou app relies on transmit-
ting typed content to Sogou’s servers as part of its ordinary functionality. Keystrokes
coming from users anywhere in the world are transmitted to servers in mainland China,
which are operating under the legal jurisdiction of the Chinese government. High risk
users of Sogou should be cautious, as typed material could include sensitive or personal
information. The attacks outlined in this report demonstrate how network eavesdrop-
pers can decipher such data in transit. However, even with the vulnerabilities resolved,
such data will still be accessible by Sogou’s operators and by anyone with whom they
share the data.

https://citizenlab.ca/2016/02/privacy-security-issues-baidu-browser/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://arxiv.org/abs/1802.03367
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://citizenlab.ca/2016/08/a-tough-nut-to-crack-look-privacy-and-security-issues-with-uc-browser/
https://www.usenix.org/conference/foci16/workshop-program/presentation/knockel
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2022/01/cross-country-exposure-analysis-my2022-olympics-app/
https://citizenlab.ca/2022/01/cross-country-exposure-analysis-my2022-olympics-app/
https://www.chinainternetwatch.com/26785/input-method-2018/
https://www.openssl.org/news/secadv/20030219.txt

B
TN

R T

(o8 v
S0 v
i

AR

va‘w}i\p}
SYURANE

TR

	Key findings
	Introduction
	Methodology
	Findings
	Sogou’s EncryptWall
	Attack
	Windows version 13.4
	Android version 11.20
	iOS version 11.21

	Mitigation
	Coordinated disclosure
	Limitations
	Discussion

