The not-so-silent type
Vulnerabilities across keybhoard apps

reveal keystrokes to network
eavesdroppers

By Jeffrey Knockel, Mona Wang, and Zoé Reichert

00

&1 UNIVERSITY OF memm
¥ TORONTO THECITIZENLAB

munk school

Copyright

© 2024 Citizen Lab. Licensed under the Creative Commons BY-SA 4.0 (Attribution-
ShareAlike License).

@ 0

Electronic version first published by the Citizen Lab in 2024. This work can be
accessed through https://citizenlab.ca/2024/04/vulnerabilities-across-keyboar

d-apps-reveal-keystrokes-to-network-eavesdroppers/.
Document Version: 1.1.
Changelog:

« Fixed a typo.

The Creative Commons Attribution-ShareAlike 4.0 license under which this report
is licensed lets you freely copy, distribute, remix, transform, and build on it, as
long as you:

+ give appropriate credit
+ indicate whether you made changes
+ use and link to the same CC BY-SA 4.0 license

However, any rights in excerpts reproduced in this report remain with their respec-
tive authors; and any rights in brand and product names and associated logos
remain with their respective owners. Uses of these that are protected by copyright
or trademark rights require the rightsholder’s prior written agreement.

https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/
https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/

About the Citizen Lab, Munk School of Global Affairs & Public
Policy, University of Toronto

The Citizen Lab is an interdisciplinary laboratory based at the Munk School of
Global Affairs & Public Policy, University of Toronto, focusing on research, develop-
ment, and high-level strategic policy and legal engagement at the intersection of
information and communication technologies, human rights, and global security.

We use a “mixed methods” approach to research that combines methods from
political science, law, computer science, and area studies. Our research includes
investigating digital espionage against civil society, documenting Internet filtering
and other technologies and practices that impact freedom of expression online,
analyzing privacy, security, and information controls of popular applications, and
examining transparency and accountability mechanisms relevant to the relation-
ship between corporations and state agencies regarding personal data and other
surveillance activities.

Acknowledgements

We would like to thank Jedidiah Crandall, Jakub Dalek, Pellaeon Lin, and Sarah
Scheffler for their guidance and review of this report. Research for this project
was supervised by Ron Deibert.

Suggested Citation

Jeffrey Knockel, Mona Wang, and Zoé Reichert. “The not-so-silent type: Vulnera-
bilities across keyboard apps reveal keystrokes to network eavesdroppers,’ Cit-
izen Lab Report No. 175, University of Toronto, April 2024. Available at: https:
//citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystroke
s-to-network-eavesdroppers/.

https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/
https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/
https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/

Contents

Key findings
1. Introduction
2. Related work
3. Methodology
4. Findings
4.1. Tencent
4.2. Baidu
4.3. iFlytek
4.4. Samsung
4.5. Huawei
4.6. Xiaomi
4.7. OPPO
4.8. Vivo
4.9. Honor
5. Other affected keyboard apps

. Coordinated disclosure

6.1. Barriers to users receiving security updates
6.2. Language barriers in responsible disclosures

Limitations

Discussion

8.1. Impact of these vulnerabilities

8.2. How did these vulnerabilities arise

8.3. Can we systemically address these vulnerabilities?

. Summary of recommendations

Known affected software

. Disclosure timelines

15
18
22
23
25
27
27

29

31
32
33

34

34
34
37
38

44

47

48

CITIZEN LAB RESEARCH REPORT NO. 175 1

We urge users to install the latest updates to their keyboard
apps and that they keep their mobile operating systems up to
date. We also recommend that at-risk users consider switching
from a cloud-based keyboard app to one that operates entirely
on-device.

Key findings

> We analyzed the security of cloud-based pinyin keyboard apps from
nine vendors — Baidu, Honor, Huawei, iFlytek, OPPO, Samsung, Ten-
cent, Vivo, and Xiaomi — and examined their transmission of users’
keystrokes for vulnerabilities.

> Our analysis revealed critical vulnerabilities in keyboard apps from
eight out of the nine vendors in which we could exploit that vulnera-
bility to completely reveal the contents of users’ keystrokes in transit.
Most of the vulnerable apps can be exploited by an entirely passive
network eavesdropper.

> Combining the vulnerabilities discovered in this and our previous re-
port analyzing Sogou’s keyboard apps, we estimate that up to one bil-
lion users are affected by these vulnerabilities. Given the scope of these
vulnerabilities, the sensitivity of what users type on their devices, the
ease with which these vulnerabilities may have been discovered, and
that the Five Eyes have previously exploited similar vulnerabilities in
Chinese apps for surveillance, it is possible that such users’ keystrokes
may have also been under mass surveillance.

> We reported these vulnerabilities to all nine vendors. Most vendors
responded, took the issue seriously, and fixed the reported vulnerabil-
ities, although some keyboard apps remain vulnerable.

> We conclude our report by summarizing our recommendations to var-
ious stakeholders to attempt to reduce future harm from apps which
might feature similar vulnerabilities.

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

THE NOT-SO-SILENT TYPE

1. Introduction

Typing logographic languages such as Chinese is more difficult than typing al-
phabetic languages, where each letter can be represented by one key. There is
no way to fit the tens of thousands of Chinese characters that exist onto a single
keyboard. Despite this obvious challenge, technologies have developed which
make typing in Chinese possible. To enable the input of Chinese characters, a
writer will generally use a keyboard app with an “Input Method Editor” (IME).
IMEs offer a variety of approaches to inputting Chinese characters, including via
handwriting, voice, and optical character recognition (OCR). One popular phonetic
input method is Zhuyin, and shape or stroke-based input methods such as Cangjie
or Wubi are commonly used as well. However, used by nearly 76% of mainland
Chinese keyboard users, the most popular way of typing in Chinese is the pinyin
method, which is based on the pinyin romanization of Chinese characters.

All of the keyboard apps we analyze in this report fall into the category of input
method editors (IMEs) that offer pinyin input. These keyboard apps are particularly
interesting because they have grown to accommodate the challenge of allowing
users to type Chinese characters quickly and easily. While many keyboard apps
operate locally, solely within a user’s device, IME-based keyboard apps often have
cloud features which enhance their functionality. Because of the complexities
of predicting which characters a user may want to type next, especially in logo-
graphic languages like Chinese, IMEs often offer “cloud-based” prediction services
which reach out over the network. Enabling “cloud-based” features in these apps
means that longer strings of syllables that users type will be transmitted to servers
elsewhere. As many have previously pointed out, “cloud-based” keyboards and
input methods can function as vectors for surveillance and essentially behave
as keyloggers. While the content of what users type is traveling from their device
to the cloud, it is additionally vulnerable to network attackers if not properly se-
cured. This report is not about how operators of cloud-based IMEs read users’
keystrokes, which is a phenomenon that has already been extensively studied and
documented. This report is primarily concerned with the issue of protecting this
sensitive data from network eavesdroppers.

In this report, we analyze the security of cloud-based pinyin keyboard apps from
nine vendors: Baidu, Honor, Huawei, iFlytek, OPPO, Samsung, Tencent, Vivo, and
Xiaomi. We examined these apps’ transmission of users’ keystrokes for vulnerabil-

https://en.wikipedia.org/wiki/Bopomofo
https://en.wikipedia.org/wiki/Stroke_(CJK_character)
https://en.wikipedia.org/wiki/Cangjie_input_method
https://en.wikipedia.org/wiki/Wubi_method
https://www.iimedia.cn/c400/92144.html
https://link.springer.com/chapter/10.1007/978-3-030-22660-2_3
https://en.wikipedia.org/wiki/Pinyin_input_method
https://en.wikipedia.org/wiki/Pinyin_input_method
https://en.wikipedia.org/wiki/Pinyin
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-jin
https://www.paloaltonetworks.com/blog/2013/12/baidu-secretly-collecting-japanese-user-data/
https://www.wired.com/story/iflytek-china-ai-giant-voice-chatting-surveillance/

CITIZEN LAB RESEARCH REPORT NO. 175 3

ities. Our analysis revealed critical vulnerabilities in keyboard apps from eight out
of the nine vendors — all but Huawei — in which we could exploit that vulnerability
to completely reveal the contents of users’ keystrokes in transit.

Between this report and our Sogou report, we estimate that close to one billion
users are affected by this class of vulnerabilities. Sogou, Baidu, and iFlytek IMEs
alone comprise over 95% of the market share for third-party IMEs in China, which
are used by around a billion people. In addition to the users of third party keyboard
apps, we found that the default keyboards on devices from three manufacturers
(Honor, OPPO, and Xiaomi) were also vulnerable to our attacks. Devices from
Samsung and Vivo also bundled a vulnerable keyboard, but it was not used by
default. In 2023, Honor, OPPO, and Xiaomi alone comprised nearly 50% of the
smartphone market in China.

Having the capability to read what users type on their devices is of interest to
a number of actors — including government intelligence agencies that operate
globally — because it may encompass exceptionally sensitive information about
users and their contacts including financial information, login credentials such as
usernames or passwords, and messages that are otherwise end-to-end encrypted.
Given the known capabilities of state actors, and that Five Eyes agencies have
previously exploited similar vulnerabilities in Chinese apps for the express purpose
of mass surveillance, it is possible that we were not the first to discover these
vulnerabilities and that they have previously been exploited on a mass scale for
surveillance purposes.

We reported these issues to all eight of the vendors in whose keyboards we found
vulnerabilities. Most vendors responded, took the issue seriously, and fixed the
reported vulnerabilities, although some keyboard apps remain vulnerable. Users
should keep their apps and operating systems up to date. We recommend that
they consider switching from a cloud-based keyboard app to one that operates
entirely on-device if they are concerned about these privacy issues.

The remainder of this report is structured as follows. In the “Related work” section,
we outline previous security and privacy research that has been conducted on
IME apps and past research which relates to issues of encryption in the Chinese
app ecosystem. In “Methodology”, we describe the reverse engineering tools and
techniques we used to analyze the above apps. In the “Findings” section, we ex-
plain the vulnerabilities we discovered in each app and (where applicable) how we

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://www.yicaiglobal.com/news/iflytek-sinks-after-chinese-ai-firm-virtual-keyboard-is-pulled-from-app-stores
https://medium.com/syncedreview/will-iflytek-voice-inputs-98-accuracy-kill-the-keyboard-d28cee0a4d62
https://www.chinainternetwatch.com/26785/input-method-2018/
https://www.globaltimes.cn/page/202101/1214202.shtml
https://www.yicaiglobal.com/news/iflytek-sinks-after-chinese-ai-firm-virtual-keyboard-is-pulled-from-app-stores
https://www.sohu.com/a/526615058_120906337
https://www.icloudnews.net/a/69782.html
https://www.idc.com/getdoc.jsp?containerId=prAP51817224
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://citizenlab.ca/2016/08/a-tough-nut-to-crack-look-privacy-and-security-issues-with-uc-browser/

THE NOT-SO-SILENT TYPE

exploited these vulnerabilities. In “Coordinated disclosure”, we discuss how we
reported the vulnerabilities we found to the companies and their responses to our
outreach. Finally, in “Discussion”, we reflect on the impact of the vulnerabilities
we discovered, how they came to be, and ways that we can avoid similar problems
in the future. We provide recommendations to all stakeholders in this systemic
privacy and security failure, including users, IME and keyboard developers, oper-
ating systems, mobile device manufacturers, app store operators, International
standards bodies, and security researchers.

2. Related work

There has been much work analyzing East Asian apps for their security and pri-
vacy properties. As examples from outside of China, researchers studied LINE, a
Japanese-developed app, and KakaoTalk, a South Korean-developed app, finding
that they have faults in their end-to-end encryption implementations. When it
comes to Chinese software, the Citizen Lab has previously revealed privacy and
security issues in several Chinese web browsers, and identified vulnerabilities in
the Zoom video conferencing platform and the MY2022 Olympics app. Unfortu-
nately, even developers of extremely popular apps often overlook implementing
proper security measures and protecting user privacy.

Some work has been concerned specifically with the privacy issues with cloud-
based keyboard apps. As the technology powering keyboard apps became more
popular and sophisticated, awareness of the potential security risks associated
with these apps grew. Two main areas of concern have received the most attention
from security researchers when it comes to cloud-based keyboard apps: whether
user data is secure in the cloud servers and whether it is secure in transit as it
moves from the user’s device to a cloud server.

Some researchers have expressed concern over companies handling sensitive
keystroke data and have made attempts to ameliorate the risk of the cloud server
being able to record what you typed. In 2013, the Japanese government published
concerns it had with privacy regarding the Baidu IME, particularly the cloud in-
put function. Researchers have also been concerned with surveillance via other
“cloud-based” IMEs, like iFlytek’s voice input. While there has been a push to
develop privacy-aware cloud-based IMEs that would keep user data secret, they
are not widely used. While it is concerning what companies might do with user

https://www.usenix.org/conference/foci17/workshop-program/presentation/espinoza
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1046438&dswid=8775
https://citizenlab.ca/2016/02/privacy-security-issues-baidu-browser/
https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/
https://arxiv.org/abs/1802.03367
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://citizenlab.ca/2016/08/a-tough-nut-to-crack-look-privacy-and-security-issues-with-uc-browser/
https://www.usenix.org/conference/foci16/workshop-program/presentation/knockel
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2022/01/cross-country-exposure-analysis-my2022-olympics-app/
https://www.paloaltonetworks.com/blog/2013/12/baidu-secretly-collecting-japanese-user-data/
https://www.wired.com/story/iflytek-china-ai-giant-voice-chatting-surveillance/
https://ieeexplore.ieee.org/document/7008273

CITIZEN LAB RESEARCH REPORT NO. 175 5

keystroke data, our research pertains to the security of user keystroke data before
it even reaches cloud servers and who else other than the cloud operator may be
able toread it.

Other research has studied the leakage of sensitive information when user key-
stroke data is in transit between a user’s device to a remote cloud server. If not
properly encrypted, data can be intercepted and collected by network eavesdrop-
pers. In 2015 security researchers proposed and evaluated a system to identify
keystroke leakages in IME traffic, revealing that at least one IME was transmitting
sensitive data without encrypting it at all. Another investigation in the same year
showed that the most popular IME, Sogou, was sending users’ device identifiers
in the clear. In our 2023 report we exposed Sogou falling short once more, finding
that Sogou allowed network eavesdroppers to read what users were typing—as
they typed—in any application. All of these discoveries point to developers of
these applications overlooking the importance of transport security to protect
user data from network attackers.

While previous work studying the security of keystroke network data in transit
investigates single keyboard apps at a time, our report is the first to holistically
evaluate the network security of the cloud-based keyboard app landscape in
China.

3. Methodology

We analyzed the Android and, if present, the iOS and Windows versions of key-
board apps from the following keyboard app vendors: Tencent, Baidu, iFlytek,
Samsung, Huawei, Xiaomi, OPPO, Vivo, and Honor. The first three — Tencent,
Baidu, and iFlytek — are software developers of keyboard apps whereas the re-
maining six — Samsung, Huawei, Xiaomi, OPPO, Vivo, and Honor — are mobile
device manufacturers who either developed their own keyboard apps or include
one or more of the other three developers’ keyboard apps preinstalled on their
devices. We selected these nine vendors because we identified them as having
integrated cloud recommendation functionality into their products and because
they are popularly used. To procure the versions we analyzed, between August and
November, 2023, we downloaded the latest versions of them from their product
websites, the Apple App Store, or, in the case of the apps developed or bundled
by mobile device manufacturers, by procuring a mobile device that has the app

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-jin
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/apps-sending-plain-http-put-personal-data-risk/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

THE NOT-SO-SILENT TYPE

preinstalled on the ROM. In the case that we obtained the app as pre-installed on
a mobile device, we ensured that the device’s apps and operating system were
fully updated before beginning analysis of its apps. The devices we obtained were
intended for the mainland Chinese market, and, when device manufacturers had
two editions of their device, a Chinese edition and a global edition, we analyzed
the Chinese edition.

To better understand whether these vendors’ keyboard apps securely imple-
mented their cloud recommendation functionality, we analyzed them to deter-
mine whether they sufficiently encrypted users’ typed keystrokes. To do so, we
used both static and dynamic analysis methods. We used jadx to decompile and
statically analyze Dalvik bytecode and IDA Pro to decompile and statically analyze
native machine code. We used frida to dynamically analyze the Android and iOS
versions and IDA Pro to dynamically analyze the Windows version. Finally, we used
Wireshark and mitmproxy to perform network traffic capture and analysis.

To prepare for our dynamic analysis of each keyboard app, after installing it, we
enabled the pinyin input if it was not already enabled. The keyboards we analyzed
generally prompted users to enable cloud functionality after installation or on
first use. In such cases, we answered such prompts in the affirmative or otherwise
enabled cloud functionality through the mobile device’s or app’s settings.

In our analysis, we assume a fairly conservative threat model. For most of our
attacks, we assume a passive network eavesdropper that monitors network pack-
ets that are sent from a user’s keyboard app to a keyboard app’s cloud server. In
one of our attacks, specifically against apps using Tencent’s Sogou API, we allow
the adversary to be active in a limited way in that the adversary may additionally
transmit network traffic to the cloud server but does not necessarily have to be a
machine-in-the-middle (MITM) or spoof messages from the user in a layer 3 sense.
In all of our attacks, the adversary also has access to a copy of the client software,
but the server is a black box.

We note that, as neither Apple’s nor Google’s keyboard apps have a feature to
transmit keystrokes to cloud servers for cloud-based recommendations, we did
(and could) not analyze these keyboards for the security of this feature. However,
we observed that none of the mobile devices that we analyzed included Google’s
keyboard, Gboard, preinstalled, either. This finding likely results from Google’s

https://en.wikipedia.org/wiki/List_of_custom_Android_distributions
https://github.com/skylot/jadx
https://hex-rays.com/ida-pro/
https://frida.re/
https://hex-rays.com/ida-pro/
https://www.wireshark.org/
https://mitmproxy.org/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Network_layer

CITIZEN LAB RESEARCH REPORT NO. 175 7

exit from China reportedly due to the company’s failure to comply with China’s
pervasive censorship requirements.

4. Findings

Among the nine vendors whose apps we analyzed, we found that there was only
one vendor, Huawei, in whose apps we could not find any security issues regarding
the transmission of users’ keystrokes. For each of the remaining eight vendors,
in at least one of their apps, we discovered a vulnerability in which keystrokes
could be completely revealed by a passive network eavesdropper (see Table 1 for
details).

The ease with which the keystrokes in these apps could be revealed varied. In
one app, Samsung Keyboard, we found that the app performed no encryption
whatsoever. Some apps appeared to internally use Sogou’s cloud functionality
and were vulnerable to an attack which we previously published. Most vulnerable
apps failed to use asymmetric cryptography and mistakenly relied solely on home-
rolled symmetric encryption to protect users’ keystrokes.

The remainder of this section details further analysis of the apps we analyzed
from each vendor and, when present, their vulnerabilities.

X X working exploit created to decrypt transmitted keystrokes for both
active and passive eavesdroppers

X working exploit created to decrypt transmitted keystrokes for an
active eavesdropper

weaknesses present in cryptography implementation

no known issues

N/A | product not offered or not present on device analyzed

Legend

https://www.businessinsider.com/google-pulls-out-of-china-2010-3
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

THE NOT-SO-SILENT TYPE

Keyboard developer Android i0OS | Windows
Tencent!) 4 N/A) 4
Baidu ! ! XX
iFlytek XX v v
Pre-installed keyboard developer
Device manufacturer | Own | Sogou | Baidu | iFlytek
Samsung XX | v | XX N/A N/A N/A
Huawei v | V/ N/A N/A N/A N/A
Xiaomi N/A X | XX XX | NA N/A
OPPO N/A X XX N/A N/A N/A
Vivo v X N/A N/A N/A N/A
Honor NA | NA | XX N/A N/A N/A

" Default keyboard app on our test device.

T Both QQ Pinyin and Sogou IME are developed by Tencent; in this report we analyzed QQ
Pinyin and found the same issues as we had in Sogou IME.

Table 1: Summary of vulnerabilities discovered in popular keyboards and in keyboards

pre-installed on popular phones.

41. Tencent

We have previously analyzed one Tencent keyboard app, Sogou, in a previous
report. We were motivated by our previous findings analyzing Sogou to analyze
another Tencent keyboard app, QQ Pinyin. We analyzed QQ Pinyin on Android
and Windows. We found that the Android version (8.6.3) and Windows version
(6.6.6304.400) of this software communicated to similar cloud servers as Sogou
and contained the same vulnerabilities to those which we previously reported in
Sogou IME (see Table 2 for details).

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

CITIZEN LAB RESEARCH REPORT NO. 175 9

Platform | File/Package Name Version analyzed | Secure?
Android | com.tencent.qgpinyin 8.6.3) 4
Windows | QQPinyin_Setup_6.6.6304.400.exe | 6.6.6304.400 X

Table 2: The versions of QQ Pinyin that we analyzed.

42. Baidu

We analyzed Baidu IME for Windows, Android, and iOS. We found that Baidu IME for
Windows includes a vulnerability which allows network eavesdroppers to decrypt
network transmissions. This means third parties can obtain sensitive personal
information including what users have typed. We also found privacy and security
weaknesses in the encryption used by the Android and iOS versions of Baidu IME
(see Table 3 for details).

) Version
Platform | File/Package Name Secure? | Protocol
analyzed
BaiduPinyinSetu
Windows Y = 6.0.3.44 X X | BAIDUV3.1
6.0.3.44.exe
Android | com.baidu.input 11.7.19.9 BAIDUv4.0
i0S com.baidu.inputMethod | 11.7.20 BAIDUV4.0

Table 3: The versions of Baidu IME that we analyzed.

The Android version transmitted keystrokes information via UDP packets to ud
polimeok.baidu.comand that the Windows and iOS versions transmitted
keystrokes to udpolimenew.baidu.com. The two mobile versions that we
analyzed, namely the Android and iOS versions, transmitted these keystrokes
according to a stronger protocol, whose payload begins with the bytes 0x04 0x00.
The Windows version transmitted these keystrokes according to a weaker protocol,
whose UDP payload begins with the bytes 0x03 0x01. We henceforth refer to
these protocols as the BAIDUv4.0 and BAIDUv3.1 protocols, respectively. In the
remainder of this section we detail multiple weaknesses in the BAIDUv4.0 protocol

10

THE NOT-SO-SILENT TYPE

7 Plaintext block Plaintext block Stolen ciphertext || Plaintext™ \

[T [T

Initialization vector Initialization vector + n - 1 Initialization vector + n

Key Key

| Encrypt | | Encrypt rypt |

. Baidu’s modified CTR

[T T DIFZDIH:DID

[ITTTTTTTT T
Ciphertext block Ciphertext block partly encrypted twice Last ciphertext block

Figure 1: Illustration of BCTR mode encryption scheme used by Baidu IME on Android and
i0S. Adapted from this figure.

used by the Android and iOS versions and explain how a network eavesdropper
can decrypt the contents of keystrokes transmitted by the BAIDUv3.1 protocol.

4.2.1. Weaknesses in BAIDUv4.0 protocol

To encrypt keystroke information, the BAIDUv4.0 protocol uses elliptic-curve
Diffie-Hellman and a pinned server public key (pk;) to establish a shared secret
key for use in a modified version of AES.

Upon opening the keyboard, before the first outgoing BAIDUv4.0 protocol message
is sent, the application randomly generates a client Curve25519 public-private
key pair, which we will call (pk., sk.). Then, a Diffie-Hellman shared secret k is
generated using sk, and a pinned public key pk;. To send a message with plaintext
P, the application reuses the first 16 bytes of pk. as the initialization vector (IV)
for symmetric encryption, and k is used as the symmetric encryption key. The
resulting symmetric encryption of P is then sent along with pk. to the server. The
server can then obtain the same Diffie-Hellman shared secret k from pk. and sk,
the private key corresponding to pk;, to decrypt the ciphertext.

The BAIDUV4.0 protocol symmetrically encrypts data using a modified version
of AES, which symbols in the code indicate Baidu has called AESv3. Compared
to ordinary AES, AESv3 has a built-in cipher mode and padding. AESv3’s built-in
cipher mode mixes bytes differently and uses a modified counter (CTR) mode
which we call Baidu CTR (BCTR) mode, illustrated in Figure 1.

https://en.wikipedia.org/wiki/Ciphertext_stealing#/media/File:CipherText_Stealing_(CTS)_on_CBC,_encryption_mode.svg
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Curve25519

CITIZEN LAB RESEARCH REPORT NO. 175 11

Generally speaking, any CTR cipher mode involves combining an initialization
vector v with the value i of some counter, whose combination we shall notate as
v +i. Most commonly, the counter value used for block i is simply i, i.e., it begins
at zero and increments for each subsequent block, and AESv3’s implementation
follows this convention. There is no standard way to compute v +iin CTR mode,
but the way that BCTR combines v and i is by adding i to the left-most 32-bits
of v, interpreting this portion of v and i in little-endian byte order. If the sum
overflows, then no carrying is performed on bytes to the right of this 32-bit value.
The implementation details we have thus far described do not significantly deviate
from a typical CTR implementation. However, where BCTR mode differs from
ordinary CTR mode is in how the value v +i is used during encryption. In ordinary
CTR mode, to encrypt block i with key k, you would compute

plain; XOR encrypt(v + 1, k).
In BCTR mode, to encrypt block i, you compute
encrypt(plain; XOR (v +1i), k).

As we will see later, this deviation will have implications for the security of the
algorithm.

While ordinarily CTR mode does not require the final block length to be a multiple
of the cipher’s block size (in the case of AES, 16 bytes), due to Baidu’s modifi-
cations, BCTR mode no longer automatically possesses this property but rather
achieves it by employing ciphertext stealing. If the final block length n is less than
16, AESv3’s implementation encrypts the final 16 byte block by taking the last
(16 - n) bytes of the penultimate ciphertext block and prepending them to the n
bytes of the ultimate plaintext block. The encryption of the resultant block fills the
last (16 - n) bytes of the penultimate ciphertext block and the n bytes of the final
ciphertext block. Note, however, that this practice only works when the plaintext
consists of at least two blocks. Therefore, if there exists only one plaintext block,
then AESv3 right-zero-pads that block to be 16 bytes.

Privacy issues with key and IV re-use. Since the IV and key are both directly
derived from the client key pair, the IV and key are reused until the application
generates a new key pair. This only happens when the application restarts, such as
when the user restarts the mobile device, the user switches to a different keyboard
and back, or the keyboard app is evicted from memory. From our testing, we have

https://en.wikipedia.org/wiki/Ciphertext_stealing

12

THE NOT-SO-SILENT TYPE

Figure 2: When a bitmap image (left) is encrypted in ECB mode, patterns in the image are
still visible in the ciphertext (right). Adapted from these figures.

observed the same key and IV in use for over 24 hours. There are various issues
that arise from key and IV reuse.

Re-using the same IV and key means that the same inputs will encrypt to the same
encrypted ciphertext. Additionally, due to the way the block cipher is constructed,
if blocks in the same positions of the plaintexts are the same, they will encrypt to
the same ciphertext blocks. As an example, if the second block of two plaintexts
are the same, the second block of the corresponding ciphertexts will be the same.

Weakness in cipher mode. The electronic codebook (ECB) cipher mode is noto-
rious for having the undesirable property that equivalent plaintext blocks encrypt
to equivalent ciphertext blocks, allowing patterns in the plaintext to be revealed
in the ciphertext (see Figure 2 for an illustration).

While BCTR mode used by Baidu does not as flagrantly reveal patterns to the same
extent as ECB mode, there do exist circumstances in which patternsin the plaintext
can still be revealed in the ciphertext. Specifically, there exist circumstances in
which there exists a counter-like pattern in the plaintext which can be revealed by
the ciphertext (see Figure 3 for an example). These circumstances are possible due
to the fact that (IV +/) is XORed with each plaintext block i and then encrypted,
unlike ordinary CTR mode which encrypts (IV + i) and XORs it with the plaintext.

https://commons.wikimedia.org/wiki/File:Tux.svg#/media/File:Tux.svg
https://commons.wikimedia.org/wiki/File:Tux_ECB.png#/media/File:Tux_ECB.png

CITIZEN LAB RESEARCH REPORT NO. 175 13

Block Plaintext Ciphertext
0 |oojoofoofoojoo]oojoofoofoofoo]oojoojoofoofooloo|e2|d4|00(1c|c6|5d|80]|33|0clpol48]7d|d5|27(72|7a
1 [o1]oo|oo]oojoofoofoo]o0]00]00[00[{00[00]00]|00|00|e2|d4[00|1c|c6|5d(80[33[0c|b9|48]|7d|d5({27(72|7a

Figure 3: When encrypted with the randomly generated key <96 66 08d1 6f 8082 86
a7bh7da43 96eedla2> and IV <485b 5492 0c80a620 296f95e5 c56a3de2>
using Baidu’s modified CTR mode, the above plaintext blocks in positions 0 and 1 encrypt to
the same ciphertext.

Thus, when using BCTR mode, if the plaintext exhibits similar counting patterns
as (IV +1i), then for multiple blocks the value ((IV + i) XOR plaintext block i) may be
equivalent and thus encrypt to an equivalent ciphertext.

More generally, BCTR mode fails to provide the cryptographic property of diffusion.
Specifically, if an algorithm provides diffusion, then, when we change a single bit
of the plaintext, we expect half of the bits of the ciphertext to change. However, the
example in Figure 3 illustrates a case where changing a single bit of the plaintext
caused zero bits of the ciphertext to change, a clear violation of the expectations of
this property. The property of diffusion is vital in secure cryptographic algorithms
so that patterns in the plaintext are not visible as patterns in the ciphertext.

Other privacy and security weaknesses. There are other weaknesses in the
custom encryption protocol designed by Baidu IME that are not consistent with
the expected standards for a modern encryption protocol used by hundreds of
millions of devices.

Forward secrecy issues with static Diffie-Hellman. The use of a pinned static
server key means that the cipher is not forward secret, a property of other modern
network encryption ciphers like TLS. If the server key is ever revealed, any past
message where the shared secret was generated with that key can be successfully
decrypted.

Lack of message integrity. There are no cryptographically secure message in-
tegrity checks, which means that a network attacker may freely modify the cipher-
text. There is a CRC32 checksum calculated and included with the plaintext data,
but a CRC32 checksum does not provide cryptographic integrity, as it is easy to
generate CRC32 checksum collisions. Therefore, modifying the ciphertext may be
possible. In combination with the issue concerning key and IV reuse, this protocol
may be vulnerable to a swapped block attack.

https://en.wikipedia.org/wiki/Confusion_and_diffusion
https://en.wikipedia.org/wiki/Forward_secrecy

14

THE NOT-SO-SILENT TYPE

def derive_fixed_key():
key = []
X = 0
for i 1in range(16):
key.append((~i A ((i + 11) * (x >> (i & 3)))) & 0xff)
X += 1937
return bytes(key)

Figure 4: Python code equivalent to the code that the BAIDUv3.1 protocol uses to derive its
fixed key. The function takes no input and derives the same key on every invocation.

4.2.2. Vulnerability in BAIDUv3.1 protocol

The BAIDUv3.1 protocol is weaker than the BAIDUV4.0 protocol and contains a
critical vulnerability that allows an eavesdropper to decrypt any messages en-
crypted with it. The protocol in the versions of Baidu’s keyboard apps that we
analyzed encrypts keystrokes using a modified version of AES which we call AESv2,
as we believe it to be the predecessor cipher to Baidu’s AESv3. When a keyboard
app uses the BAIDUv3.1 protocol with the AESv2 cipher, we say that it uses the
BAIDUvV3.1+AESv2 scheme. Normally, AES when used with a 128-bit key performs
10 rounds of encryption on each block. However, we found that AESv2 uses only 9
rounds but is otherwise equivalent to AES encryption with a 128-bit key.

The BAIDUV3.1+AESv2 scheme encrypts keystrokes using AESv2 in the following
manner. First, a key is derived according to a fixed function (see Figure 4). Note
that the function takes no input nor references any external state and thus always
generates the same static key

ki=<ff9ed548 075al10e4 efO@6c72e a7a2f236>.

To encrypt a protobuf-serialized message, the BAIDUv3.1 protocol first snappy-
compresses it, forming a compressed buffer. The 32-bit, little-endian length of
this compressed message is then prepended to the compressed buffer, forming
the plaintext. Arandomly generated 128-bit key k,, is used to encrypt the plaintext
using AESv2 in ECB mode. The resulting ciphertext is stored in bytes 44 until the
end of the final UDP payload. Key kris used to encrypt k,,, using AESv2 in ECB mode.
The resulting ciphertext is stored in bytes 28 until 44 of the final UDP payload.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Round_(cryptography)
https://en.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Snappy_(compression)

CITIZEN LAB RESEARCH REPORT NO. 175 15

[...]
2 {
1: "nihaocanyoureadthis"
5: 3407918
b
3 {
1: 107
2: 10
5: 1
+
4 {
1: "1133d4c64afbflfeda85d3c497dd6164|0"
2: "wnl||o"
3: "6.0.3.44"
4: "notepad.exe"
+
[...]

Figure 5: Excerpt of decrypted information, including what we had typed (*“nihao-
canyoureadthis”) and the app into which it was typed (“notepad.exe”).

We found that these encrypted protobuf serializations include our typed key-
strokes as well as the name of the application into which we were typing them
(see Figure 5).

Avulnerability exists in the BAIDUv3.1+AESv2 scheme that allows a network eaves-
dropper to decrypt the contents of these messages. Since AES is a symmetric
encryption algorithm, the same key used to encrypt a message can also be used to
decrypt it. Since ks fixed, any network eavesdropper with knowledge of ky, such
as from performing the same analysis of the app as we performed, can decrypt
kn and thus can decrypt the plaintext contents of each message encrypted in the
manner described above. As we found that users’ keystrokes and the names of
the applications they were using were sent in these messages, a network eaves-
dropper who is eavesdropping on a user’s network traffic can observe what that
user is typing and into which application they are typing it by taking advantage of
this vulnerability.

43. iFlytek

We analyzed iFlytek (also called xtinféi from the pinyin of il K) IME on Android,
i0S, and Windows. We found that iFlytek IME for Android includes a vulnerability

16

THE NOT-SO-SILENT TYPE

which allows network eavesdroppers to recover the plaintext of insufficiently
encrypted network transmissions, revealing sensitive information including what
users have typed (see Table 4 for details).

Platform | File/Package Name Version analyzed | Secure?
Android | com.iflytek.inputmethod 12.1.10 XX
i0S com.iflytek.inputime 12.1.3338

Windows | iFlyIME_Setup_3.0.1734.exe | 3.0.1734

Table 4: The versions of Xunfei IME analyzed.

The Android version of iFlytek IME encrypts the payload of each HTTP request
sentto pinyin.voicecloud.cn with the following algorithm. Let s be the
current time in seconds since the Unix epoch at the time of the request. For each
request, an 8-byte encryption key is then derived by first performing the following
computation:

x = (s % Ox5F5E100) A 0x1001111

The 8-byte key k is then derived from x as the lowest 8 ASClI-encoded digits of x,
left-padded with leading zeroes if necessary, in big-endian order. In Python, the
above can be summarized by the following expression:

k =b'%08u' % ((s % 0x5F5E100) A 0x1001111)

The payload of the request is then padded with PKCS#7 padding and then en-
crypted with DES using key k in ECB mode. The value s is transmitted in the HTTP
request in the clear as a GET parameter named “time”.

Since DES is a symmetric encryption algorithm, the same key used to encrypt
a message can also be used to decrypt it. Since k can be easily derived from
s and since s is transmitted in the clear in every HTTP request encrypted by k,
any network eavesdropper can easily decrypt the contents of each HTTP request
encrypted in the manner described above. (Since s is simply the time in single
second resolution, it also stands to reason that a network eavesdropper would
have general knowledge of s in any case.)

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/PKCS_7
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)

CITIZEN LAB RESEARCH REPORT NO. 175 17

1: 0
2: 0
3: 49
40 "xxxxx"
5: 0
7 {
1: "app_id"
2: "100IME"
}
7 {
1: "uid"
2: "230817031752396418"
}
7 {
1: "cli_ver"
2: "12.1.14983"
}
7 {
1: "net_type"
2: "wifi"
}
7 {
1: "os"
2: "android"
}
8: 8

Figure 6: Decrypted information revealing what we had typed (“xxxxx”).

We found that users’ keystrokes were transmitted in a protobuf serialization and
encrypted in this manner (see Figure 6). Therefore, a network eavesdropper who
is eavesdropping on a user’s network traffic can observe what that user is typing
by taking advantage of this vulnerability.

Finally, the DES encryption algorithm is an older encryption algorithm with known
weaknesses, and the ECB block cipher mode is a simplistic and problematic cipher
mode. The use of each of these technologies is problematic in itself and opens
the Android version of iFlytek IME’s communications to additional attacks.

18

THE NOT-SO-SILENT TYPE

4.4, Samsung

We analyzed Samsung Keyboard on Android as well as the versions of Sogou IME
and Baidu IME that Samsung bundled with our test device, an SM-T220 tablet
running ROM version T220CHN4CWF4. We found that Samsung Keyboard for
Android and Samsung’s bundled version Baidu IME includes a vulnerability that
allows network eavesdroppers to recover the plaintext of insufficiently encrypted
network transmissions, revealing sensitive information including what users have
typed (see Table 5 for details).

Application name | Package name Version analyzed | Secure?
com.samsung.
S Keyboard 5.6.10.26 XX
amsung Reyboar android.honeyboard
i A% (Baid
AL (Baidu com.baidu.input 8.5.20.4 XX
IME)
AN N vy
R NIA= 2R com.sohu.inputmethod. | 10.32.38.
(Sogou IME

) sogou.samsung 202307281642
Samsung Version)

Table 5: The keyboards analyzed on the Samsung OneUl 5.1 platform.

4.4.1. Samsung Keyboard (com.samsung.android.honey-
board)

We found that when using Samsung Keyboard on the Chinese edition of a Sam-
sung device and when Pinyin is chosen as Samsung Keyboard’s input language,
Samsung Keyboard transmits keystroke data to the following URL in the clear via
HTTP POST:

http://shouji.sogou.com/web_ime/mobile_pb.php?durtot=33
9&h=8f2bcl112-bbec-3f96-86ca-652e98316ad8&r=android_oe
m_samsung_open&v=8.13.10038.413173&s=&e=&1=&fc=0&base=
dW5rbm93biswLjArMC4w&ext_ver=0

The keystroke data is contained in the request’s HTTP payload in a protobuf
serialization (see Figure 7).

CITIZEN LAB RESEARCH REPORT NO. 175 19

14
1: "8f2bcll2-bbec-3f96-86ca-652€98316ad8"
2: "android_oem_samsung_open"
3: "8.13.10038.413173"
4: "999"
5: 1
T: 2
}
2

1: "\351\000"

2: "\372\213"
+
4: "com.tencent.mobileqq"
7: "nihaocanyoureadthis"

16: 10
17 {
31
1: 1
2: 5
+
5: 1
9: 1
}
18: ""
19 {
1: "o"
4; "339"
}

Figure 7: Protobuf message transmitted after typing “nihaocanyoureadthis”.

The device on which we were testing was fully updated on the date of testing
(October 7,2023) in that it had all OS updates applied and had all updates from
the Samsung Galaxy Store applied.

Since Samsung Keyboard transmits keystroke data via plain, unencrypted HTTP
andsincethereisnoencryption applied atany other layer, a network eavesdropper
who is monitoring a Samsung Keyboard user’s network traffic can easily observe
that user’s keystrokes if that user is using the Chinese edition of the ROM with the
Pinyin input language selected.

20

THE NOT-SO-SILENT TYPE

When using the global edition of the ROM or when using a non-Pinyin input lan-
guage, we did not observe the Samsung keyboard communicating with cloud
servers.

4.4.2. FHJEHiAL (Baidu IME)

We found that the version of Baidu IME bundled with our Samsung test device
transmitted keystroke information via UDP packets to udpolimenew. baidu.
com. This version of Baidu IME used the BAIDUv3.1 protocol that we describe in
the Baidu section earlier but with a different cipher and compression algorithm as
indicated in each transmission’s header. In the remainder of this section we explain
how a network eavesdropper can, just like with AESv2, decrypt the contents of
messages encrypted using a scheme we call BAIDUv3.1+AESv1 (see Table 6).

Protocol Scheme Cipher | Mode | Cipher versus AES

BAIDUvV3.1+AESv1 | AESvl | ECB | Additional permutations

BAIDUv3.1
BAIDUV3.1+AESv2 | AESv2 | ECB | Missing round

Uses home-rolled cipher
BAIDUv4.0 | BAIDUv4.0+AESv3 | AESv3 | BCTR q
mode

Table 6: Summary of ciphers used across different Baidu protocols.

Samsung’s bundled version of Baidu IME encrypts keystrokes using a modified
version of AES which we name AESv1, as we believe it to be the predecessor to
Baidu’s AESv2. When encrypting, AESv1’s key expansion is like that of standard
AES, except, on each but the first subkey, the order of the subkey’s bytes are
additionally permuted. Furthermore, on the encryption of each block, the bytes
of the block are additionally permuted in two locations, once near the beginning
of the block’s encryption immediately after the block has been XOR’d by the first
subkey and again near the end of the block’s encryption immediately before S-
box substitution. Aside from complicating our analysis, we are not aware of these
modifications altering the security properties of AES, and we have developed an
implementation of this algorithm to both encrypt and decrypt messages given a
plaintext or ciphertext and a key.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/AES_key_schedule
https://en.wikipedia.org/wiki/S-box
https://en.wikipedia.org/wiki/S-box

CITIZEN LAB RESEARCH REPORT NO. 175 21

RO OO0 00 00 1C OO 00 00 24 1B 08 21 /20 03 FC 04 . v « . o . . . T
0L 08 00 00 20 00 OO0 00 39 32 46 38 45 45 37 38 &« ..+ ...92FABEE74
4 31 44 44 43 42 43 37 34 43 46 45 42 31 31 36 F1lDDCBET4CFEB1L114
36 46 37 30 38 38 33 44 25 37 43 30 61 31 7CS53 6F70883D%7C0al]|s
4D 20 54 32 32 30 20 67 74 B1 37 6C 69 74 65 77 M-T220-gtallitew
69 66 &9 7C 33 32 30 3B 2E 35 2E 32 30 2E 34 63 i f4i|13208.5.20.4c
G6F 60 2E 61 GE 64 72 6F 69 64 2E 73 65 74 74 69 om.android.setti
6E 67 73 2E 6% G6E 74 65 6C GC 69 67 65 6E 63 65 ngs.intelligence
31 30 31 32 34 39 37 71 01 00 20 00 1A 00 01 00 101243 7g.. & o...
16 00 32 E4 BD A0 ES AS BD E6 83 A8 E5 8F B8 ET . .2 {r i & o

"O2F8EE78F1DDCBE74CFEB1166F70883D%7C0O",
"al|SM-T220-gta7litewifi|320",
"8.5.20.4",
"com.android.settings.intelligence",
"1012497q",

nn
>

"R 4B XK R,
llll]’
1: [0, "", "QRIElYTa\ZISlg-FlehdohEs" |

Figure 8: The decrypted and decompressed payload, revealing what we had typed (“ni-
haocanyoureadthis”, highlighted) and the app into which it was typed (“com.android.set-
tings.intelligence”); on top is a hex dump of, when decrypted and decompressed, the result-
ing proprietary binary blob, and below it is our understanding of how to parse it.

Samsung’s bundled version of Baidu IME encrypts keystrokes by applying AESv1
in electronic codebook (ECB) mode in the following manner. First, the app uses
the fixed 128-bit key,

ki=<ff9ed548 075al1l0e4 ef06c72e a7a2f236>,

to encrypt another, generated, key, k.. The fixed key k¢ is the same key the BAIDU-
v3.1 protocol uses for AESv2 (see Figure 4). The encryption of k,, is stored in bytes
64 until 80 of each UDP packet’s payload. The key k,, is then used to encrypt the
remainder of a zlib-compressed message payload, which is stored at byte 80 until
the end of the UDP payload. We found that the encrypted payload included, in a
binary container format which we did not recognize, our typed keystrokes as well
as the name of the application into which we were typing them (see Figure 8).

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_codebook_(ECB)

22

THE NOT-SO-SILENT TYPE

Avulnerability exists in the BAIDUv3.1+AESv1 scheme that allows a network eaves-
dropper to decrypt the contents of these messages. Since AES, including AESv1,
is a symmetric encryption algorithm, the same key used to encrypt a message
can also be used to decrypt it. Since k¢ is hard-coded, any network eavesdropper
with knowledge of ks can decrypt k,, and thus decrypt the plaintext contents of
each message encrypted in the manner described above. As we found that users’
keystrokes and the names of the applications they were using were sent in these
messages, a network eavesdropper who is eavesdropping on a user’s network
traffic can observe what that user is typing and into which application they are
typing it by taking advantage of this vulnerability.

Additionally, in the version of Baidu Input Method distributed by Samsung, we
found that key k,, was not securely generated using a secure pseudorandom
number generator (secure PRNG). Instead, it was seeded using a custom-designed
PRNG that we believe to have poor security properties, and, instead of using a high
entropy seed, the PRNG generating k,, was seeded using the message plaintext.
However, even without these weaknesses in the generation of k,,, the protocol
is already completely insecure to network eavesdroppers as described in the
previous paragraphs.

45. Huawei

We analyzed the keyboards preinstalled on our Huawei Mate 50 Pro test device.
We found no vulnerabilities in the manner of transmission of users’ keystrokes
in the versions of Huawei’s keyboard apps that we analyzed (see Table 7 for de-
tails). Specifically, Huawei used TLS to encrypt keystrokes in each version that we

analyzed.
Application name Package Name Version analyzed | Secure?
. com.sohu.
M4 A% (Sogou IME) | | 11.31
inputmethod.sogou
; com.huawei.ohos.
N HIATE (Celia IME) . 1.0.19.333
inputmethod

Table 7: The versions of the Huawei keyboard apps analyzed on HarmonyOS 4.0.0.

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Pseudorandom_number_generator

CITIZEN LAB RESEARCH REPORT NO. 175 23

46. Xiaomi

We analyzed the keyboards preinstalled on our Xiaomi Mi 11 test device. We found
that they all include vulnerabilities that allow network eavesdroppers to decrypt
network transmissions from the keyboards (see Table 8 for details). This means
that network eavesdroppers can obtain sensitive personal information, including
what users have typed.

Application name | Package Name Version analyzed | Secure?
[E1E2 2NN S T
(Baidu IME Xiaomi | com.baidu.input_mi 10.6.120.480 XX
Version)
A N 7 \\ /.
NS J,*mi, com.sohu.inputmethod. | 10.32.21.
(Sogou IME Xiaomi T X
. sogou.xiaomi 202210221903
Version)
KA TR KAR :
. . | com.iflytek.
(iFlytek IME Xiaomi | . L 8.1.8014 XX
. inputmethod.miui
Version)

Table 8: The versions of the Xiaomi keyboard apps analyzed on MIUI 14.03.31.

In this section we detail vulnerabilities in three different keyboard apps included
with MIUI 14.0.31 in which users’ keystrokes can be, if necessary, decrypted, and
read by network eavesdroppers.

4.6.1. THEHKIAZ/MKRR (Baidu IME Xiaomi Version)

We found that Xiaomi’s Baidu-based keyboard app encrypts keystrokes using the
BAIDUv3.1+AESv2 scheme which we detailed previously. When the app’s messages
are decrypted and deserialized, we found that they include our typed keystrokes as
well as the name of the application into which we were typing them (see Figure 9).

Like we explained previously a vulnerability exists in the BAIDUv3.1+AESv2 scheme
that allows a network eavesdropper to decrypt the contents of these messages.
As we found that users’ keystrokes and the names of the applications they were
using were sent in these messages, a network eavesdropper who is eavesdropping

24

THE NOT-SO-SILENT TYPE

[...]
2 {
1: "nihaonihaoqqwerty"
}
3 {
1: 53
2: 10
3: 1080
4: 2166
5: 5
+
4 {
1: "DCOF75E6809FOFAAB4G6EDE2F2D6302ED%7CVAPBN4ANOH"
2: ”p—al—3—66|2211133C|720"
3: "10.6.120.480"
4: "com.miui.notes"
5: "1000228c"
6: "\346\242\205\345\267\236"
}
[...]

Figure 9: Excerpt of decrypted information, including what we had typed (“nihaonihaoqqw-
erty”) and the application into which it was typed (“com.miui.notes”).

on a user’s network traffic can observe what that user is typing and into which
application they are typing it by taking advantage of this vulnerability.

4.6.2. 1R NTE/INKIR (Sogou IME Xiaomi Version)

The Sogou-based keyboard app is subject to a vulnerability which we have already
publicly disclosed in Sogou IME (% A7%) in which a network eavesdropper can
decrypt and recover users’ transmitted keystrokes. Please see the corresponding
details in this report for full details. Tencent responded by securing Sogou IME
transmissions using TLS, but we found that Xiaomi’s Sogou-based keyboard had
not been fixed.

4.6.3. i KHiIAZ/IKRR (iFlytek IME Xiaomi Version)

Similar to iFlytek’s own IME for Android, we found that Xiaomi’s iFlytek keyboard
app used the same faulty encryption. We found that users’ keystrokes were sent
topinyin.voicecloud.cnand encrypted in this manner.

https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf
https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf

CITIZEN LAB RESEARCH REPORT NO. 175 25

{llpll:{llm||:53,llfll:o’lllll :0},ll-il|:||n-ihaon-iball}

Figure 10: Excerpt of decrypted information, including what we had typed (“nihaoniba”).

Therefore, a network eavesdropper who is eavesdropping on a user’s network
traffic can observe what that user is typing by taking advantage of this vulnerability
(see Figure 10).

41. 0PPO

We analyzed the keyboard apps preinstalled on our OPPO OnePlus Ace test device.
We found that they all include vulnerabilities that allow network eavesdroppers to
decrypt network transmissions from the keyboards (see Table 9 for details). This
means that network eavesdroppers can obtain sensitive personal information,
including what users have typed.

Application name | Package Name Version analyzed | Secure?
B NTREHll
(Baidu IME Custom | com.baidu.input_oppo | 8.5.30.503 XX
Version)

G AN Ne o4 I
TR NRERNR | - sohu 8.32.0322.
(Sogou IME Custom | |) 4

) inputmethod.sogouoem | 2305171502

Version)

Table 9: The versions of the OPPO keyboard apps analyzed on ColorOS 13.1.

In this section we detail vulnerabilities in two different keyboard apps included
with MIUI 14.0.31 in which users’ keystrokes can be, if necessary, decrypted, and
read by network eavesdroppers.

4.7.1. FEHEANZEERI (Baidu IME Custom Version)

We found that OPPQO’s Baidu-based keyboard app encrypts keystrokes using the
BAIDUv3.1+AESv2 scheme which we detailed previously. When the app’s messages
are decrypted and deserialized, we found that they include our typed keystrokes as
well as the name of the application into which we were typing them (see Figure 11).

26

THE NOT-SO-SILENT TYPE

[...]
2 {
1: "nihaonihao"
}
3 {
1: 28
2: 10
3: 1240
4: 2662
5: 5
+
4 {
1: "47148455BDAEBA8A253ACBCC1CA40B1B%7CV7ITLNPID"
2: "p-al-5-105|PHK110]|720"
3: "8.5.30.503"
4: "com.android.mms"
5: "1021078a"
b
[...]

Figure 11: Excerpt of decrypted information, including what we had typed (“nihaonihao”)
and the application into which it was typed (“com.android.mms”).

Like we explained previously a vulnerability exists in the BAIDUv3.1+AESv2 scheme
that allows a network eavesdropper to decrypt the contents of these messages.
As we found that users’ keystrokes and the names of the applications they were
using were sent in these messages, a network eavesdropper who is eavesdropping
on a user’s network traffic can observe what that user is typing and into which
application they are typing it by taking advantage of this vulnerability.

4.7.2. 1 NIEEHIRR (Sogou IME Custom Version)

The Sogou-based keyboard app is subject to a vulnerability which we have already
publicly disclosed in Sogou IME (#%i%i A7%:) in which a network eavesdropper can
decrypt and recover users’ transmitted keystrokes. Please see the corresponding
details in this report for full details. Tencent responded by securing Sogou IME
transmissions using TLS, but we found that OPPO’s Sogou-based keyboard had
not been fixed.

https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf
https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf

CITIZEN LAB RESEARCH REPORT NO. 175 27

48. Vivo

We analyzed the keyboard apps preinstalled on our Vivo Y78+ test device. We
found that the Sogou-based one includes vulnerabilities that allow network eaves-
droppers to decrypt network transmissions from the keyboards (see Table 10 for
details). This means that network eavesdroppers can obtain sensitive personal
information, including what users have typed.

Keyboard name Package Name Version analyzed | Secure?
St N\ 7208 il
l com.sohu.inputmethod. | 10.32.13023.

(Sogou IME Custom) X

) SOgou.vivo 2305191843
Version)
Jovikii AT% (Jovi
IM;H"NZE (com.vivo.ai.ime 2.6.1.2305231 v

Table 10: The versions of the Vivo keyboard apps analyzed on origin OS 3.

The Sogou-based keyboard app is subject to a vulnerability which we have already
publicly disclosed in Sogou IME (f#4%i A\7%) in which a network eavesdropper can
decrypt and recover users’ transmitted keystrokes. Please see the corresponding
details in this report for full details. Tencent responded by securing Sogou IME
transmissions using TLS, but we found that Vivo’s Sogou-based keyboard had not
been fixed.

4.9. Honor

We analyzed the keyboard apps preinstalled on our Honor Play7T test device.
We found that the Baidu-based one includes vulnerabilities that allow network
eavesdroppers to decrypt network transmissions from the keyboards (see Table 11
for details). This means that network eavesdroppers can obtain sensitive personal
information, including what users have typed.

https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf
https://tspace.library.utoronto.ca/bitstream/1807/128769/1/Report%23170-sogou-keyboard-encryption.pdf

28

THE NOT-SO-SILENT TYPE

[...]
2 {
1: "nihaonihaonihaoqg"
5: 6422639
b
3 {
1: 91
2: 10
3: 720
4: 1552
5: 5
}
4 {
1: "A49AD3D3789A136975C2B28201753F03%7C0O"
2: "p-al-5-115|RKY-AN10|720"
3: "8.2.501.1"
4: "com.hihonor.mms"
5: "1023233d"
7: "AOO-TWGTFEV50FZ7TWZ2AFN5TCDE4BPNO7XRZ-BVEZBI4D"
+
[...]

Figure 12: Excerpt of decrypted information, including what we had typed (“nihaonihaoni-
haoq”) and the application into which it was typed (“com.hihonor.mms”).

Application name | Package Name | Version analyzed | Secure?

B ER LSRR .
. com.baidu.

(Baidu IME Honor | _ 8.2.501.1 XX
) input_hihonor

Version)

Table 11: The versions of the Honor keyboard apps analyzed on Magic Ul 6.1.0.

We found that Honor’s Baidu-based keyboard app encrypts keystrokes using the
BAIDUv3.1+AESv2 scheme which we detailed previously. When the app’s messages
are decrypted and deserialized, we found that they include our typed keystrokes as
well as the name of the application into which we were typing them (see Figure 12).

Like we explained previously a vulnerability exists in the BAIDUv3.1+AESv2 scheme
that allows a network eavesdropper to decrypt the contents of these messages.
As we found that users’ keystrokes and the names of the applications they were
using were sent in these messages, a network eavesdropper who is eavesdropping

CITIZEN LAB RESEARCH REPORT NO. 175 29

on a user’s network traffic can observe what that user is typing and into which
application they are typing it by taking advantage of this vulnerability.

As of April 1, 2024, “Baidu IME Honor Version”, the default IME on the Honor device
we tested, is still vulnerable to passive decryption. We also discovered that on our
Play7T device, there was no way to update “Baidu IME Honor Version” through the
device’s app store. In responding to our disclosures, Honor asked us to disclose
to Baidu and that it was Baidu’s responsibility to patch this issue.

5. Other affected keyboard apps

Given our limited resources to analyze apps, we were not able to analyze every
cloud-based keyboard app available. Nevertheless, given that these vulnerabilities
appeared to affect APIs that were used by multiple apps, we wanted to approxi-
mate the total number of apps affected by these vulnerabilities.

We began by searching VirusTotal, a database of software and other files that have
been uploaded for automated virus scanning, for Android apps which reference
the string “get.sogou.com”, the APl endpoint used by Sogou IME, as these apps
may require additional investigation to determine whether they are vulnerable.
Excluding apps that we analyzed above, this search yielded the following apps:

+ com.sohu.sohuvideo

+ com.tencent.docs

+ com.sogou.reader.free

+ com.sohu.inputmethod.sogou.samsung
+ com.sogou.text

« com.sogou.novel

« com.sogo.appmall

« com.blank_app

+ com.sohu.inputmethod.sogou.nubia
+ com.sogou.androidtool

« com.sohu.inputmethod.sogou.meizu
« com.sohu.inputmethod.sogou.zte

+ sogou.mobile.explorer.hmct

+ sogou.mobile.explorer

+ com.sogou.translatorpen

https://www.virustotal.com/

30

THE NOT-SO-SILENT TYPE

com.sec.android.inputmethod.beta
com.sohu.inputmethod.sogou.meitu
com.sec.android.inputmethod
sogou.mobile.explorer.online
com.sohu.sohuvideo.meizu
com.sohu.inputmethod.sogou.oem
com.sogou.map.android.maps
sogou.llg.online
com.sohu.inputmethod.sogou.coolpad
com.sohu.inputmethod.sogou.chuizi
com.sogou.toptennews
com.sogou.recmaster
com.meizu.flyme.input

We have not analyzed these apps and thus cannot conclude that they are neces-

sarily vulnerable, or even keyboard apps, but we provide this list to help reveal
the possible scope of the vulnerabilities that we discovered. When we disclosed
this list to Tencent, Tencent requested an additional three months to fix the vul-
nerabilities before we publicly disclosed this list, suggesting credence to the idea

that apps in this list are largely vulnerable. Similarly, after excluding apps that we
had already analyzed, the following are other Android apps which reference the
strings “udpolimenew.baidu.com” or “udpolimeok.baidu.com”, the APl endpoints
used by Baidu Input Method:

com.adamrocker.android.input.simeji
com.facemoji.lite.xiaomi.gp
com.facemoji.lite.xiaomi
com.preff.kb.xm
com.facemoji.lite.transsion
com.txthinking.brook
com.facemoji.lite.vivo
com.baidu.input_huawei
com.baidu.input_vivo
com.baidu.input_oem
com.preff.kb.op
com.txthinking.shiliew
mark.via.gp
com.qginggan.app.windlink

CITIZEN LAB RESEARCH REPORT NO. 175 31

« com.baidu.mapauto

These findings suggest that a large ecosystem of apps may be affected by the
vulnerabilities that we discovered in this report.

6. Coordinated disclosure

We reported the vulnerabilities that we discovered to each vendor in accordance
with our vulnerability disclosure policy. All companies except Baidu, Vivo, and
Xiaomi responded to our disclosures. Baidu fixed the most serious issues we
reported to them shortly after our disclosure, but Baidu has yet to fix all issues
that we reported to them. The mobile device manufacturers whose preinstalled
keyboard apps we analyzed fixed issues in their apps except for their Baidu apps,
which either only had the most serious issues addressed or, in the case of Honor,
did not address any issues (see Table 12 for details). Regarding QQ Pinyin, Tencent
indicated that “with the exception of end-of-life products, we aim to finalize the
upgrade for all active products to transmit EncryptWall requests via HTTPS by the
conclusion of Q1 [2024]”, but, as of April 1, 2024, we have not seen any fixes to
this product. Tencent may consider QQ Pinyin end-of-life as it has not received
updates since 2020, although we note that it is still available for download. For
timelines and full correspondence of our disclosures to each vendor, please see
the Appendix.

X X working exploit created to decrypt transmitted keystrokes for both
active and passive eavesdroppers

X working exploit created to decrypt transmitted keystrokes for an
active eavesdropper

weaknesses present in cryptography implementation

no known issues or all known issues fixed

N/A | product not offered or not present on device analyzed

Legend.

https://citizenlab.ca/disclosure-of-security-vulnerabilities/

32

THE NOT-SO-SILENT TYPE

Keyboard developer Android i0OS | Windows
Tencent! X N/A X
Baidu ! ! !
iFlytek v v v
Pre-installed keyboard developer
Device manufacturer | Own | Sogou | Baidu | iFlytek
Samsung 4 v’ ! N/A N/A N/A
Huawei v’ v N/A N/A N/A N/A
Xiaomi N/A v ! v 4 N/A N/A
OPPO NA | r N/A N/A N/A
Vivo v | V/ N/A N/A N/A N/A
Honor NA | NA | XX N/A N/A N/A

" Default keyboard app on our test device.
T Both QQ Pinyin and Sogou IME are developed by Tencent; in this report we analyzed QQ
Pinyin and found the same issues as we had in Sogou IME.
Table 12: Status of vulnerabilities after disclosure as of April 1,2024.

To summarize, we no longer have working exploits against any products except
Honor’s keyboard app and Tencent’s QQ Pinyin. Baidu’s keyboard apps on other
devices continue to contain weaknesses in their cryptography which we are unable
to exploit at this time to fully decrypt users’ keystrokes in transit.

6.1. Barriers to users receiving security updates

Users can receive updates to their keyboard apps on their phones’ app stores,
and such updates typically install in the background without user intervention.
In our testing, updating keyboard apps was typically performed without friction.
However, in some cases, a user may need to also ensure that they have fully

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

CITIZEN LAB RESEARCH REPORT NO. 175 33

updated their operating system before they will receive the fixes to our reported
vulnerabilities for their keyboard app through the app store. In the case of the
Honor device we tested, there was no update mechanism for the default keyboard
used by the operating system through the app store. Honor devices bundled with
avulnerable version of the keyboard will remain vulnerable to passive decryption.
In the case of the Samsung Galaxy Store, we found that on our device a user
must sign in with a Samsung account before receiving security updates to their
keyboard app. In the case the user does not have a Samsung account, then they
must create one. We believe that installing important security updates should
be frictionless, and we recommend that Samsung and app stores in general not
require the registration of a user account before receiving important security
updates.

We also learned from communication with Samsung’s security team that our test
device had been artificially stuck on an older version of Baidu IME (version 8.5.20.4)
compared to the one in the Samsung Galaxy Store. This is because, although the
test device was using a Chinese ROM, we were prevented from receiving updates to
Baidu IME because the app was geographically unavailable in Canada, where we
were testing from. Samsung addressed this issue by adding Baidu’s keyboard app
to the global market. Generally speaking, we recommend that Samsung and other
app stores do not geoblock security updates to apps that are already installed.

6.2. Language barriers in responsible disclosures

We suspect that a language barrier may have prevented iFlytek from responding to
our initial disclosure in English. After we did not receive a response for one month,
we re-sent the same disclosure e-mail, but with a subject line and one-sentence
summary in simplified Chinese. iFlytek responded within three days of this second
email and promptly fixed the issues we noted. All future disclosure emails to the
Chinese mobile device manufacturers were then written with Chinese subject
lines and a short summary in Chinese. Though obvious in hindsight, we encourage
security researchers to consider if the company to which they are disclosing uses
a different language than the researcher. We suggest submitting vulnerability
disclosures, at the very least, with short summaries and email subject lines in the
official language of the company’s jurisdiction to prevent similar delays as we
may have encountered in disclosure timelines.

https://en.wikipedia.org/wiki/Simplified_Chinese_characters

34

THE NOT-SO-SILENT TYPE

1. Limitations

In this report we detail vulnerabilities relating to the security of the transmission
of users’ keystrokes in multiple keyboard apps. In this work we did not perform
a full audit of any app or make any attempt to exhaustively find every security
vulnerability in any software. Our report concerns analyzing keyboard apps for a
class of vulnerabilities that we discovered, and the absence of our reporting of
other vulnerabilities should not be considered evidence of their absence.

8. Discussion

In this section we discuss the impact of the vulnerabilities that we found, speculate
as to the factors that gave rise to them, and conclude by introducing possible
ways to systemically prevent such vulnerabilities from arising in the future.

8.1. Impact of these vulnerabilities

The scope of these severe vulnerabilities cannot be overstated: until this and our
previous Sogou report, the majority of Chinese mobile users’ keystrokes were
decryptable by network adversaries. The keyboards we studied comprise over
95% of the third-party IME market share, which is estimated to be over 780 million
users by marketing agencies. In addition, the three phone manufacturers which
pre-installed and by default used vulnerable keyboard apps comprise nearly 50%
of China’s smartphone market.

The vulnerabilities that we discovered would be inevitably discovered by any-
one who thinks to look for them. Furthermore, the vulnerabilities do not require
technological sophistication to exploit. With the exception of the vulnerability af-
fecting many Sogou-based keyboard apps that we previously discovered, all of the
vulnerabilities that we covered in this report can be exploited entirely passively
without sending any additional network traffic. This also means any existing logs
of network data sent by these keyboards can be decrypted in the future. As such,
we might wonder, are these vulnerabilities actively under mass exploitation?

While many governments may possess sophisticated mass surveillance capa-
bilities, the Snowden revelations gave us unique insight into the capabilities
of the United States National Security Agency (NSA) and more broadly the Five

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://www.yicaiglobal.com/news/iflytek-sinks-after-chinese-ai-firm-virtual-keyboard-is-pulled-from-app-stores
https://www.sohu.com/a/526615058_120906337
https://www.sohu.com/a/526615058_120906337
https://www.idc.com/getdoc.jsp?containerId=prAP51817224
https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Five_Eyes
https://en.wikipedia.org/wiki/Five_Eyes

CITIZEN LAB RESEARCH REPORT NO. 175 35

TORSECRET//COM

Approximately 150 sites

Over 700 servers

TOP SECRET//COMINT//REL TO USA, AUS, CAN, GBR, NZL
Figure 13: Locations of XKEYSCORE servers as described in a 2008 NSA slide deck.

Eyes. The revelations disclosed, among other programs, an NSA program called
XKEYSCORE for collecting and searching Internet data in realtime across the globe
(see Figure 13). Leaked slides describing the program specifically reveal only a
few examples of XKEYSCORE plugins. However, one was a plugin that was written
by a Five Eyes team to take advantage of vulnerabilities in the cryptography of
Chinese-developed UC Browser to enable the Five Eyes to collect device iden-
tifiers, SIM card identifiers, and account information pertaining to UC Browser
users (see Figure 14 for an illustration).

The similarity of the vulnerability exploited by this XKEYSCORE plugin and the
vulnerabilities described in this report are uncanny, as they are all vulnerabilities
in the encryption of sensitive data transmissions in software predominantly used
by Chinese users. Given the known capabilities of XKEYSCORE, we surmise that the
Five Eyes would have the capability to globally surveil the keystrokes of all of the
keyboard apps that we analyzed with the exception of Sogou and the apps licens-
ing its software. This single exception exists because Sogou cannot be monitored
passively and would require sending packets to Sogou servers. Such commu-
nications would be measurable at Sogou’s servers and at other vantage points,

https://en.wikipedia.org/wiki/Five_Eyes
https://en.wikipedia.org/wiki/Five_Eyes
https://en.wikipedia.org/wiki/Five_Eyes
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
https://www.eff.org/files/2015/06/30/20150521-cbc-synergising_network_analysis_tradecraft.pdf
https://www.cbc.ca/news/canada/spy-agencies-target-mobile-phones-app-stores-to-implant-spyware-1.3076546
https://citizenlab.ca/2015/05/a-chatty-squirrel-privacy-and-security-issues-with-uc-browser/
https://citizenlab.ca/2016/08/a-tough-nut-to-crack-look-privacy-and-security-issues-with-uc-browser/

36

THE NOT-SO-SILENT TYPE

S .

~ UCWeb — XKS Microplugin

mmmmmmmmmmmmmmmm A anduet Modet [

20513028921 BRIANT n23mavies nokised0-1 9379000100 s ESOHLGO0IMO000

N205ATEHI00 BIIGF Z3mavies nakises0.1 9379000100 [EIOHLSO00IMO000
a1 an

Help Actons~ Reports® Veew = Map View
Swe © =

1 12 i "
3 " 0
4 12 " 2 TR TET!

‘ z 1t i aan Hoklal 724
5 1240514 175 wis TR TGS B, A s Hokiaks 00
& MNSAENEIEN e FNTOSABAEIEN RAAADY st Hakiallh 0
I 20120515 200258 1 J3 20120515 200258 804121 NokiaX6.00

Figure 14: The dashboard of an XKEYSCORE plugin used to monitor for transmissions of
sensitive data insufficiently encrypted by UC Browser as described in a 2012 Five Eyes slide
deck.

is
sis.

93781080013 sis HSHAZE3T1450000

93781090013 sis. HEH12522145000

potentially revealing the Five Eyes’s target(s) of surveillance to Sogou or Chinese
network operators. Therefore, targets of outdated Sogou software would be un-
desirable victims of mass surveillance, even if such non-passive measurements
were within the known capabilities of XKEYSCORE or other Five Eyes programs.

Given the enormous intelligence value of knowing what users are typing, we
can conclude that not only do the NSA and more broadly the Five Eyes have
the capabilities to mass exploit the vulnerabilities we found but also the strong
motivation to exploit them. If the Five Eyes’ capabilities are an accurate reflection
of the capabilities and motivations of other governments, then we can assume
that many other governments are also capable and motivated to mass exploit
these vulnerabilities. The only remaining question is whether any government
had knowledge of these vulnerabilities. If they did not have such knowledge
before our original report analyzing Sogou, they may have acquired after it in the
same way that our original research inspired us to look at similar keyboard apps
for analogous vulnerabilities. Unfortunately, short of future government leaks,
we may never know if or to what extent any state actors mass exploited these
vulnerabilities.

Even though we disclosed the vulnerabilities to vendors, some vendors failed to
fix the issues that we reported. Moreover, users of devices which are out of support
or that otherwise no longer receive updates may continue to be vulnerable. As

https://citizenlab.ca/2023/08/vulnerabilities-in-sogou-keyboard-encryption/

CITIZEN LAB RESEARCH REPORT NO. 175 37

such, many users of these apps may continue to be under mass surveillance for
the foreseeable future.

8.2. How did these vulnerabilities arise

We analyzed a broad sample of Chinese keyboard apps, finding that they are
almost universally vulnerable to having their users’ keystrokes being decrypted by
network eavesdroppers. Yet there isno common library or a single implementation
flaw responsible for these vulnerabilities. While some of the keyboard apps did
license their code from other companies, our overall findings can only be explained
by a large number of developers independently making the same kind of mistake.
As such, we might ask, how could such a large number of independent developers
almost universally make such a critical mistake?

One attempt to answer this question is to suggest that these were not mistakes at
all but deliberate backdoors introduced by the Chinese government. However,
this hypothesis is rather weak. First, user keystroke data is already being sent to
servers within Chinese legal jurisdiction, and so the Chinese government would
have access to such data anyways. Second, the vulnerabilities that we found give
the ability not just to the Chinese government to decrypt transmitted keystrokes
but to any other actor as well. In an ideal backdoor, the Chinese government would
want the desirable property that only they have access to the backdoor. Finally,
the Chinese government has made strides to study and improve the data security
of apps developed and used in China, attempting to prevent and fix the very sort of
vulnerabilities which we discovered. For instance, a 2020 report from CNCERT/CC
found that 60 percent of the 50 banking applications that they investigated did
not encrypt any user data transmitted over the network, among a litany of other
common security issues.

Were Chinese app developers skeptical of using cryptographic standards per-
ceived as “Western”? Countries such as China and Russia have their own en-
cryption standards and ciphers. To our knowledge none of the faulty encryption
implementations that we analyzed adhered to any sort of known standard in any
country, and each appeared to be home-rolled ciphers. However, it is possible
that Asian developers are less inclined to use encryption standards that they fear
may contain backdoors such as the potential Dual_EC_DRBG backdoor.

https://www.cert.org.cn/publish/main/upload/File/2020%20Annual%20Report.pdf
https://en.wikipedia.org/wiki/SM9_(cryptography_standard)
https://en.wikipedia.org/wiki/Kuznyechik
https://en.wikipedia.org/wiki/Dual_EC_DRBG

38

THE NOT-SO-SILENT TYPE

Perhaps Chinese app developers could be skeptical of standards such as SSL/TLS
as well. The TLS ecosystem has also only become nearly-universal in the past
decade. Especially before broad oversight of certificate authorities became com-
monplace, there were many valid criticisms of the SSL/TLS ecosystem. In 2011,
digital rights organizations EFF and Access Now were both concerned about the
certificate authority (CA) infrastructure underpinning SSL/TLS transport encryp-
tion. Even today, the vast majority of root certificates trusted by major OSes and
browsers are operated by certificate authorities based in the Global North. We also
note that all of the IMEs containing vulnerabilities were first released before 2013
and likely had a need for secure network transmission before SSL/TLS became
the de-facto standard for strong transport encryption.

Still, it has been a decade since the Snowden leaks demonstrated the global,
urgent, and practical need for strong encryption of data-in-transitin 2013, and the
TLS ecosystem has largely stabilized, with CA root lists of many major browsers
and OSes controlled by voting bodies and certificate transparency deployed. As
of 2024, almost 95% of web traffic from users of Firefox in the United States is
traveling over HTTPS. In addition, the speed in which both iFlytek and Sogou
switched to TLS demonstrates that making the change to standard TLS is not
necessarily a time or resource issue. Even if skepticism towards SSL/TLS explains
the reluctance to adopt it in the early 2010s, we are not sure why there is much
more inertia in the Chinese Internet ecosystem against making the switch to TLS.

Finally, mobile devices and other operating systems are still incapable of guaran-
teeing the security of data under transmission, despite iOS and Android having
introduced restrictions into their APIs. Forinstance, iOS 9 implemented App Trans-
port Security, a policy placing restrictions on the ability to transmit data without
TLS. However, there are two limitations of this technology. First, an app can spec-
ify exceptions to this policy in its Info.plist resource. Second, the policy affects
high level APIs and leaves communications over lower level socket-based APIs
unregulated. Similar to iOS, Android 9 disables cleartext traffic using certain high
level APIs by default, but an app may exclude specific domains or avoid the policy
by using lower level APIs.

8.3. Can we systemically address these vulnerabilities?

Individually analyzing apps for this class of vulnerabilities and individually re-
porting issues discovered is limited in the scale of apps that it can fix. First, while

https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://www.usenix.org/legacy/events/sec11/tech/slides/eckersley.pdf
https://www.accessnow.org/wp-content/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://en.wikipedia.org/wiki/Certificate_authority
https://support.apple.com/en-us/103254
https://www.ccadb.org/
https://cabforum.org/
https://certificate.transparency.dev/
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/news/?id=jxky8h89
https://developer.apple.com/news/?id=jxky8h89
https://developer.apple.com/documentation/bundleresources/information_property_list
https://developer.android.com/privacy-and-security/security-config

CITIZEN LAB RESEARCH REPORT NO. 175 39

we can attempt to manually analyze some of the most popular keyboard apps,
we will never be able to analyze every app at large. Second, we might not be
able to predict which apps to look at in the first place. For instance, before we
analyzed Sogou and the keyboard apps featured in this report, we never would
have expected that their network transmissions would be so easily vulnerable
to interception. In light of the limitations of the methods that we employed in
this report, in the remainder of this section we discuss possibilities for how we
might systematically or wholesale address apps which transmit sensitive data
over networks without sufficient encryption.

8.3.1. By security researchers paying more attention to the
Chinese Internet

There appears to be a general failure of researchers to analyze Chinese apps and
the Chinese Internet ecosystem at large, despite its size and influence. The Google
Play Store and Apple App Store ecosystems, for instance, are commonly studied
by privacy researchers, but many Chinese app stores are overlooked, despite
that many popular Chinese apps have more users than their counterparts on
the Google Play Store. While the vulnerabilities that we discovered were not all
trivial to find and many took substantial analysis to attack, most would have been
inevitably discovered by any researcher analyzing these apps for data security. A
researcher studying network traffic from users of Chinese devices could also have
identified strange, non-standard traffic.

8.3.2. By using app store enforcement

One might call on app stores to enforce the use of sufficient encryption to protect
sensitive data in transit. App stores already have a number of rules that they
enforce through a combination of automated and manual review. Calling on app
stores to enforce sufficient encryption of in-transit sensitive data is tempting given
the resources of the companies operating the app stores. However, failing any
other innovation, the same scaling issues that apply to other researchers studying
these apps will apply to those working for these companies.

40

THE NOT-SO-SILENT TYPE

8.3.3. By using device permission models

On Android devices, installing any keyboard, regardless of whether or how it com-
municates with servers over the Internet, brings up a pop-up with the following
text:

This input method may be able to collect all the text you type, includ-
ing personal data like passwords and credit card numbers.

The wording of these warning messages is overbroad and does not necessarily
help users distinguish between keyboards that transmit keystrokes over the net-
work, keyboards that transmit keystrokes insecurely (using something other than
standard TLS) over the network, and keyboards that do not transmit any data at
all.

i0S devices, on the other hand, sandbox their keyboards by default. There is a “Full
Access” or “open access” permission that must be explicitly granted to keyboards
before they have network access,among other privileges. Without this permission,
third-party keyboards cannot transmit network data. We recommend Android
also adopt a more fine-grained permission model for keyboards.

Furthermore, the vulnerable apps that we studied transmit data using low level
socket APIs versus higher level APIs that require the usage of TLS or HTTPS. One
might desire that separate system calls be designed for TLS or HTTPS traffic in
addition to the lower level socket system calls so that devices could implement an
UNSAFE_INTERNET permission that would be required for apps to use the lower
level system calls while still allowing TLS-encrypted traffic for apps that do not
have this permission.

While this approach may have some merit, it also has certain drawbacks. It makes
sense for situations where apps are untrustworthy and the operating system is
completely trustworthy, but there are common situations where the operating
system could be not as or even less trustworthy than apps that it is running. One
common case would be a user who is running an up-to-date app on an out of
date operating system, possibly because the user’s device is no longer receiving
operating system updates. In such a case, the app’s implementation of TLS is
more likely to be secure than that of the operating system. Furthermore, a user’s
operating system may be compromised by malware or otherwise be untrustwor-
thy in itself. Introducing a TLS system call would centralize the encryption of all

https://developer.apple.com/library/archive/documentation/General/Conceptual/ExtensibilityPG/CustomKeyboard.html

CITIZEN LAB RESEARCH REPORT NO. 175 41

sensitive data and grant the operating system easy visibility into all unencrypted
data. In any case, innovating in areas of encryption is an important right of appli-
cation developers, and it may not make sense to stifle apps like Signal because of
their use of end-to-end or other novel encryption by requiring them to obtain an
UNSAFE_INTERNET permission.

One might alternatively desire for apps at large to not be able to access the Inter-
net at all. Instead of an UNSAFE_INTERNET permission, what about introducing
an INTERNET permission to govern all Internet socket access, similar to the “Full
Access” permission which iOS already applies to keyboard apps? Android devices
in fact already have such a permission that apps must request to use Internet
(AF_INET) sockets, but it is not a permission that is exposed to ordinary users
either in the Google Play Store or through any stock Android user interface, and it
is automatically granted when installing an app. Unfortunately, given all of the
interprocess communication (IPC) vehicles on modern smart devices, restricting
Internet socket access may not guarantee that the app could not communicate
overthe Internet (e.g., through Google Play services). GrapheneOS, an open source
Android-based operating system, implements a NETWORK permission. However,
denying this permission can lead to surprising results where apps can still com-
municate with the Internet via IPC with other apps. As such, we recommend that
both the developers of Android and iOS work toward a meaningful INTERNET
permission that would adequately inform users of whether an app communicates
over the Internet.

8.3.4. By international standards bodies better engaging
with Chinese developers

We encourage International standards bodies like the IETF to continue to engage
and outreach Chinese Internet companies and engineers in good faith to further
reduce friction in cross-linguistic knowledge transfer. The presence of these sim-
ilar but independent vulnerabilities demonstrate that there is a friction in the
transfer and implementation of knowledge between the English-speaking cryp-
tography community and the Chinese cryptography community. For instance,
Schneier’s Law or the oft-repeated mantra “don’t roll your own crypto” may be
common knowledge to cryptographers trained in English, but perhaps lost in
translation. A lag across linguistic boundaries means that general information like
the recent stabilization of TLS and webPKIl infrastructure may travel more slowly,
and updating encryption software to reflect new information may lag even further

https://signal.org/
https://developer.android.com/reference/android/Manifest.permission#INTERNET
https://developer.android.com/develop/connectivity/network-ops/connecting#design-secure
https://grapheneos.org/
https://grapheneos.org/features#network-permission-toggle
https://github.com/GrapheneOS/os-issue-tracker/issues/2810
https://www.schneier.com/blog/archives/2011/04/schneiers_law.html

42

THE NOT-SO-SILENT TYPE

behind. One other possible example of this phenomenon is that, according to Fire-
fox Telemetry, up until 2020, the Japanese Internet ecosystem also significantly
lagged behind the global average in HTTPS adoption.

Although protocols put out by IETF and other International standards bodies can
be far from bulletproof, these bodies can still help facilitate international com-
munication about the current state-of-the-art in protocol encryption. The burden
of cross-linguistic and cross-cultural exchange on technical standards falls on
global standards bodies. Western media outlets and researchers tend to uniformly
attribute the actions and participation of private Chinese companies within stan-
dards bodies to government actors seeking sovereignty over Internet standards.
While skepticism may be warranted in certain cases, there is also research that
challenges a simplistic and overbroad narrative. As a single data point, we note
that we did not find these issues in Huawei’s keyboards, whose employees are
often noted as especially active participants in IETF standard-setting.

8.3.5. By using automated static or dynamic analysis

There has been a failure of automated tools to detect insecure traffic at large.
Longitudinal TLS telemetry has largely been focused on web-based perspectives
(i.e., how many domains support TLS or how many web connections are encrypted
by TLS?), and the mobile perspective is often overlooked, despite the increasing
dominance of mobile traffic globally. Although there are some research projects
that survey TLS usage in Android mobile apps at scale, there is no public longi-
tudinal data from these projects (i.e., they are run as one-off studies), and many
focus on the Google Play’s Android ecosystem, thereby excluding the Chinese
mobile Internet. There is perhaps a need for public longitudinal TLS telemetry for
popular mobile applications globally, via automated static or dynamic analysis at
scale.

8.3.6. By using attestations in app stores

Another way for users to gain visibility into the security and privacy properties
of their apps is through the use of developer attestations, such as the ones that
appear in data safety sections in many popular app stores. Both the Apple App
Store and the Google Play Store collect and display such attestations to varying
extents, including attestations as to what data an app collects (if any) and with
whom it is shared (if anyone). Additionally, the Play Store allows developers the

https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://en.wikipedia.org/w/index.php?title=Wired_Equivalent_Privacy&oldid=1199239193#Weak_security
https://en.wikipedia.org/w/index.php?title=Temporal_Key_Integrity_Protocol&oldid=1211627869#Security
https://en.wikipedia.org/wiki/KRACK
https://eprint.iacr.org/2019/383.pdf
https://slate.com/technology/2022/07/china-world-internet-conference-organization-standards.html
https://www.tandfonline.com/doi/full/10.1080/23738871.2020.1805482
https://democracyandsociety.net/ds-volume-18-truth-and-information/1619-2/
https://www.internetsociety.org/resources/doc/2022/huaweis-new-ip-proposal-faq/
https://www.tandfonline.com/doi/full/10.1080/1369118X.2022.2129270
https://www.tandfonline.com/doi/full/10.1080/17544750.2019.1650789
https://dl.acm.org/doi/10.1016/j.telpol.2014.09.005
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://letsencrypt.org/stats/
https://dl.acm.org/doi/abs/10.1145/3143361.3143400
https://www.sciencedirect.com/science/article/abs/pii/S016412122030087X
https://www.usenix.org/conference/pepr20/presentation/egelman

CITIZEN LAB RESEARCH REPORT NO. 175 43

= No data shared with third parties
Learn more about how developers declare sharin]

¢ This app may collect these data types
Location, Personal info and 4 others

5) Datais encrypted in transit
[l You can request that data be deleted

See details

Figure 15: An example of an attestation for Microsoft SwiftKey.

opportunity to attest to performing “encryption in transit” (see Figure 15 for an
example). These attestations allow users to clearly see what security and privacy
properties an app’s developer claims it to have and, like privacy policies, they
provide means of redress if violated.

We wanted to evaluate whether the apps that we analyzed lived up to their attes-
tations concerning their encryption in the app stores in which they are available.
Among the apps that we analyzed, only Baidu IME was available in the Play Store.
At the time of this writing, it does not attest to its data being encrypted in transit.
Although other apps that we analyzed were available in Apple’s App Store, to our
knowledge, this store does not display an attestation for whether the app encrypts
data in transit. As such, across both the Google Play and the Apple App stores,
attestations were insufficient for compelling the keyboard apps’ developers to
implement proper encryption or in providing users any opportunity for redress.

In light of the above findings, we believe that users would benefit from the follow-
ing recommendations: (1) that app store operators require developers to attest to
whether or not an app encrypts data in transit, (2) that app store operators display
not only when developers attest to all data being encrypted in transit but also
display a warning when they fail to, and (3) that app store operators require apps
in certain sensitive categories, such as keyboard apps, to either positively attest
to encrypting all data in transit or to attest to not transmitting any data at all.

Since most of the apps that we found perform some type of encryption, even if it
were wholly inadequate, one might wonder if attesting that data is merely “en-
crypted” is enough, since the data arguably did have some manner of encryption

https://play.google.com/store/apps/details?idc\char "0304\relax om.touchtype.swiftkey
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#what_users_will_see&what_users_will_see_no_sharing&video&collection&sharing&collection_handling&other&families&independent_security_review&upi_badge&types&data_purposes&understand_format&export_to&import_from&SDK_format&

44

THE NOT-SO-SILENT TYPE

applied to it during transit. The Play Store provides some guidance on this topic.
Under the question — “How should | encrypt data in transit?” — the documen-
tation notes: “You should follow best industry standards to safely encrypt your
app’s data in transit. Common encryption protocols include TLS (Transport Layer
Security) and HTTPS.”

Another issue with attestations is that they provide no guarantee that an app
behaves as its developers attest, as developers can, after all, make false attesta-
tions. While we wish that attestations could guarantee that an app sufficiently
implements proper cryptography to the same extent that a permission system
can guarantee an app does not use a microphone, false attestations provide an
opportunity for redress. For instance, apps which are found to violate attestations
would be subject to removal from app stores. Furthermore, apps which violate
attestations could be subject to fines by regulatory bodies such as the FTC. Finally,
apps which violate the attestation could be liable to civil suits.

While the apps we analyzed were predominantly available from Chinese app
stores, we equally recommend that Chinese app stores adopt these recommen-
dations in addition to the Apple App Store and the Google Play Store. Moreover,
while this report focuses on the problem of poor encryption practices as it ap-
plies to Chinese apps, the problem to varying extents applies to apps of all other
provenances.

9. Summary of recommendations

We conclude our report by summarizing our recommendations to multiple stake-
holders.

Recommendations to security researchers

+ Researchers should analyze more apps from the East Asian app ecosystem
and from other popular ecosystems which may be outside of their own
locale.

+ Researchers should develop better static and dynamic analysis techniques
to recognize the types of vulnerabilities that we discovered in this report at
scale.

https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#what_users_will_see&what_users_will_see_no_sharing&video&collection&sharing&collection_handling&other&families&independent_security_review&upi_badge&types&data_purposes&understand_format&export_to&import_from&SDK_format&&zippy=%2Cwhat-users-will-see-if-your-app-shares-user-data%2Cwhat-users-will-see-if-your-app-doesnt-collect-or-share-any-user-data%2Cwatch-the-data-safety-form-walkthrough-video%2Cdata-collection%2Cdata-sharing%2Cdata-handling%2Cother-app-and-data-disclosures%2Ccommitted-to-follow-the-families-policy-available-march-to-applicable-apps%2Cindependent-security-review-available-to-all-apps%2Cunified-payments-interface-badge-upi%2Cdata-types%2Cpurposes%2Cunderstand-the-csv-format%2Cexport-to-a-csv-file%2Cimport-from-a-csv-file%2Coptional-format-for-sdks

CITIZEN LAB RESEARCH REPORT NO. 175 45

+ Researchers submitting vulnerability disclosures to a company should in-
clude short summaries and email subject lines in the official language of
the company’s jurisdiction.

Recommendations to international standards bodies

+ International standards bodies should continue to engage with security
engineers from Chinese Internet companies.

Recommendations to app store operators

+ App stores should not require account registration as a condition to receive
security updates.

+ App stores should not geoblock security updates.

+ App stores should allow developers to attest to all data being transmitted
with encryption, similar to the ability in the Google Play Store.

+ App stores should display not only when developers attest to all data being
encrypted in transit but also display a warning when they fail to.

« App stores should require apps in certain sensitive categories, such as key-
board apps, to either positively attest to encrypting all data in transit or to
attest to not transmitting any data at all.

Recommendations to keyboard app developers

+ Use well-tested and standard encryption protocols, like TLS or QUIC.
+ Make every attempt to provide features on-device without requiring trans-
mitting sensitive data to cloud servers.

Recommendations to mobile operating system developers

+ Android should implement sandboxing by default for keyboard apps, similar
to i0S, that prevents a keyboard from transmitting network traffic among
other activities until a user grants the app full access.

+ The developers of Android and iOS should work toward a meaningful IN-
TERNET permission that would adequately inform users of whether any app
communicates over the Internet.

Recommendations to device manufacturers

« Conduct security audits of third-party keyboards that you intend to pre-
install by default on your operating systems.

THE NOT-SO-SILENT TYPE

Recommendations to users

+ Users of Honor’s pre-installed keyboard or users of QQ pinyin should switch
keyboards immediately.

+ Users of any Sogou, Baidu, or iFlytek keyboard, including the versions that
are bundled or pre-installed on operating systems, should ensure their
keyboards and operating systems are up-to-date.

+ Users of any Baidu IME keyboard should consider switching to a different
keyboard or disabling the “cloud-based” feature.

« Users with privacy concerns should not enable “cloud-based” features on
their keyboards or IMEs or should switch to a keyboard that does not offer
“cloud-based” prediction.

« i0S users with privacy concerns should not enable “Full Access” for their
keyboards or IMEs.

CITIZEN LAB RESEARCH REPORT NO. 175 47

A. Known affected software

We recommend that all users keep their operating systems and apps, including
keyboard apps, up to date. If you use any of the following software, we especially
recommend you update to the most recent version of your OS and application. As
of April 1, 2024, the following software has fixes available:

Separately installed, third-party keyboards
« Sogou IME / #%%i A\ % for Android and Windows
« Baidu IME / H & #i A2 for Windows (this software has only been partially
fixed, see below)
« iFlytek IME / I &5 A\ 72 for Android

Pre-installed on Samsung devices with Chinese edition ROM
+ Samsung Keyboard

. Baidu IME / BBk NIE

Pre-installed on Xiaomi devices with Chinese edition ROM
« Sogou IME Xiaomi Version / {44 A%/ NKhiR
« iFlytek IME Xiaomi Version / T K& A 1%/ N KAk

Pre-installed on OPPO devices with Chinese edition ROM
« Sogou IME Custom Version / #& 4 N\ i 2 il

Pre-installed on Vivo devices with Chinese edition ROM

« Sogou IME Custom Version / #84i \i& & il
The following software does not use TLS and may still contain weaknesses:

Separately installed, third-party keyboards
« Baidu IME / & EE#i A% for Android, Windows, and i0S

Pre-installed on Xiaomi devices with Chinese edition ROM
« Baidu IME Xiaomi Version / E EE#i N/ NEhk

Pre-installed on OPPO devices with Chinese edition ROM
« Baidu IME Custom Version / H EE# A\ L& Ik

48

THE NOT-SO-SILENT TYPE

The following software has not been fixed and is easily exploitable, and we suggest
that users switch to another keyboard entirely:

Separately installed, third-party keyboards
« QQ Pinyin IME / QQ#f & #i A% for Android and Windows

Pre-installed on Honor devices with Chinese edition ROM
« Baidu IME Honor Version / & J& ki N IEZE IR

B. Disclosure timelines

For the disclosure timelines, please see here.

https://citizenlab.ca/2024/04/vulnerabilities-across-keyboard-apps-reveal-keystrokes-to-network-eavesdroppers/#disclosure-timelines

	Key findings
	Introduction
	Related work
	Methodology
	Findings
	Tencent
	Baidu
	iFlytek
	Samsung
	Huawei
	Xiaomi
	OPPO
	Vivo
	Honor

	Other affected keyboard apps
	Coordinated disclosure
	Barriers to users receiving security updates
	Language barriers in responsible disclosures

	Limitations
	Discussion
	Impact of these vulnerabilities
	How did these vulnerabilities arise
	Can we systemically address these vulnerabilities?

	Summary of recommendations
	Known affected software
	Disclosure timelines

